K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2020

Ta có : A = x3 - y3

= (x - y)(x2 + xy + y2

= (x - y)3 + 3xy(x - y) 

Vì x + y = 3

=> (x + y)2 = 9

=> x2 + y2 + 2xy = 9

=> 149 + 2xy = 9

=> 2xy = -140

=> xy = -70

Khi đó (x - y)2 = x2 + y2 - 2xy = 149 + 2.70 = 289 

=> (x - y)2 = 172

=> x - y = \(\pm\)17

Khi x - y = 17 

=> A = (x - y)3 + 3xy(x - y) 

= 173 + 3.(-70).17 = 1343

Khi x - y = -17

=>  A = (x - y)3 + 3xy(x - y) 

= (-17)3 + 3.(-70).(-17) 

= -1343

Vậy A = 1343 hay A = -1343

22 tháng 12 2016

(x-y)^2=9

 x^2-2xy+y^2=9

-2xy=9-149

xy=70

x^2+y^2=149

x^2+2xy+y^2=149+2.70

(x+y)^2=289

 x+y=17 hoặc x+y=-17

giải theo kiểu tổng hiệu ra kết quả x=10 và y=7 hoặc x=-7 và y=-10

17 tháng 8 2016

1) Cho x+y=2 và x^2+y^2=10. Tính x^3+y^3. Giải

(x+y)^2=x^2+y^2+2xy => xy= -3 
x^3+y^3=(x+y)^3-3xy(x+y) = 26

2) Ta có: x^3+y^3 = (x+y)(x^2-xy+y^2) (1)

(x+y)^2=a^2

=> x^2 +2xy +y^2=a^2

=> b+2xy=a^2

=> xy=\(\frac{a^2-b}{2}\)

Thay (1) vào đó ta có:

x^3+y^3= (x+y)(x^2-xy+y^2) = a(b-\(\frac{a^2-b}{2}\)) = \(a\left(\frac{2b-a^2+b}{2}\right)=a.\frac{3b-a^2}{2}\)

17 tháng 8 2016

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2\left(10-xy\right)\)

Ta có: \(x^2+y^2=\left(x+y\right)^2-2xy=2^2-2xy=4-2xy=10\Rightarrow2xy=-6\Rightarrow xy=-3\)

Vậy: \(x^3+y^3=2\left(10+3\right)=2.13=26\)

13 tháng 7 2019

a, x + y = 3 => (x + y)2 = 9 <=> x2 + 2xy + y2 = 9 <=>  5 + 2xy = 9 <=> 2xy = 4 <=> xy = 2

Ta có: x3 + y3 = (x + y)(x2 - xy + y2) = 3 . (5 - 2) = 3 . 3 = 9

b, x - y = 5 => (x - y)2 = 25 <=> x2 - 2xy + y2 = 25 <=> 15 - 2xy = 25 <=> -2xy = 10 <=> xy = -5

Ta có: x3 - y3 = (x - y)(x2 + xy + y2) = 5 . (15 - 5) = 5 . 10 = 50 

DD
27 tháng 6 2021

a) \(\left(x+y\right)^2=x^2+y^2+2xy\Rightarrow4=10+2xy\Leftrightarrow xy=-3\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=2^3+3.3.2=26\)

b) \(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow m^2=n-2xy\Leftrightarrow xy=\frac{n-m^2}{2}\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=m^3+3.m.\frac{n-m^2}{2}=\frac{3mn}{2}-\frac{m^3}{2}\)

8 tháng 8 2017

(x+y)^2  =a^2

x^2 +2xy +y^2 =a^2

x^2+y^2 =a^2-2xy =a^2 -2b

x^3 +y^3 = (x+y)(x^2 -xy +y^2)

             =a(a^2-2b-b)

            =a(a^2-3b)

            =a^3- 3ab

(x^2 +y^2)^2=(a^2-2b)^2  ( cái này tính cho x^4 + y^4)

tương tự như câu đầu tiên 

x^5+ y^5 (cái đó mình không biết)

8 tháng 8 2017

sai con khi

NM
12 tháng 8 2021

a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)

\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)

\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)

b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)

\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)

\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)

`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.

`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`

`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`

`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.

a: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=3^3-3\cdot3\cdot\left(-2\right)\)

\(=27+18=45\)

b: \(\left(x^3+y^3\right)^2=45^2=2025\)

24 tháng 9 2020

Bài 1.

A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1

B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25

C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )

                                                                                  = -1( 25 + 12 ) + 3.(-12).(-1)

                                                                                  = -37 + 36

                                                                                  = -1

D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37

24 tháng 9 2020

Bài 2.

M = 3( x2 + y2 ) - 2( x3 + y3 )

= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )

= 3( x2 + y2 ) - 2( x2 - xy + y2 )

= 3x2 + 3y2 - 2x2 + 2xy - 2y2

= x2 + 2xy + y2

= ( x + y )2 = 12 = 1