tìm n là số tự nhiên để :
n^2+n chia hết cho n^2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B1:\)-Ta xát tổng của M
48 chia hết cho 4
20 chia hết cho 4
Ta áp dụng công thức a chia hết cho d;b chia hết cho d;c chia hết cho d
=>a+b+c chia hết cho d
=>Để m chia hết cho 4 thì a cũng phải chia hết cho 4
Để M không chia hết cho 4 thì a phải không chia hết cho 4
\(B2:\)1x2x3x4x5x...x20
=(5x20x4)x1x2x3x...
=400x1x2x3x...
Ta có 400 chia hết cho 400
Ta áp dụng công thức
a chia hết cho b thì a nhân với bất kì số nào cũng chia hết cho b
=>A chia hết cho 400
\(B3:\)Ta có n+10 chia hết cho n+1;n+1 chia hết cho n+1
=>(n+10)-(n+1) chia hết cho n+1
a,(n+10)-(n+1)=9
=>9 là bội của n+1
Ư(9)=(1;-1;3;-3;9;-9)
n+1 | 1 | -1 | -3 | 3 | 9 | -9 | |
n | 0 | -2 | -4 | 2 | 8 | -10 |
=.n=(0;-2;-4;2;8;-10
3n+8 chia hết cho n+2
=>3(n+2)+2 chia hết cho n+2
=>n+2 thuộc Ư(2)={1;2}
+/n+2=1=>n=-1
+/n+2=2=>n=0
vì n thuộc N
nên n=0
câu 2:
3n+5 chia hết cho n
=>5 chia hết cho n
=>n thuộc U(5)={1;5}
vì n khác 1 nên n=5
Câu 1 :
\(\frac{5}{x+1}\)\(=1\)
\(5:\left(x+1\right)=1\)
\(x+1=5:1\)
\(x+1=5\)
\(\Rightarrow x=4\)
3n + 8 chia hết cho n + 2
3n + 6 + 2 chia hết cho n + 2
Mà 3n + 6 chia hết cho n + 2
Nên 2 chia hết cho n + 2
n + 2 thuộc Ư(2) = {-2 ; - 1; 1 ; 2}
Mà n là số tự nhiên nên n = 0
3n + 4 chia hết cho n
Mà 3 n chia hết cho n
Nên 4 chia hết cho n
=> n thuộc Ư(4) = {1;2;4}
n khác 1 => n thuộc {2;4}
Câu 1: Làm lại nha:))
Ta có: 3n + 8 chia hết cho n + 2
Mà: n + 2 chia hết cho n + 2
=> 3( n + 2 ) chia hết cho n + 2
=> 3n + 6 chia hết cho n + 2
Từ đó => ( 3n + 8 ) - ( 3n + 6 ) chia hết cho n + 2
=> 2 chia hết cho n + 2
=> n + 2 \(\in\) Ư( 2 )
=> n + 2 = 2
=> n = 0
1/ Câu hỏi của Lý Khánh Linh - Toán lớp 8 - Học toán với OnlineMath
2/
Đặt \(n^2+4n+2013=m^2\left(m\in N\right)\)
\(\Rightarrow\left(n^2+4n+4\right)+2009=m^2\)
\(\Rightarrow m^2-\left(n+2\right)^2=2009\)
\(\Rightarrow\left(m+n+2\right)\left(m-n-2\right)=2009\)
Vì \(m,n\in N\Rightarrow m+n+2;m-n-2\in N\Rightarrow m+n+2>m-n-2\)
\(\Rightarrow\hept{\begin{cases}m+n+2=2009\\m-n-2=1\end{cases}\Rightarrow\hept{\begin{cases}m+n=2007\\m-n=3\end{cases}}\Rightarrow\hept{\begin{cases}m=1005\\n=1002\end{cases}}}\)
Vậy n = 1002
a) \(\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2=\left(n+10\right)^2\)
\(\Leftrightarrow n^2+2n+1+n^2+4n+4+n^2+6n+9=n^2+20n+100\)
\(\Leftrightarrow2n^2-8n-86=0\)
\(\Leftrightarrow n^2-4n=43\)
Ta có: \(n^2-4n=n^2-n-3n=n\left(n-1\right)-3n\)
\(n\left(n-1\right)\)là tích hai số tự nhiên liên tiếp nên khi chia cho \(3\)dư \(0\)hoặc \(2\).
Suy ra \(n^2-4n\)chia cho \(3\)dư \(0\)hoặc \(2\).
Mà \(43\)chia cho \(3\)dư \(1\)
do đó phương trình đã cho không có nghiệm tự nhiên.
b) Ta có: \(n^2+h^2+b^2+k^2+n+h+b+k=\left(n^2+n\right)+\left(h^2+h\right)+\left(b^2+b\right)+\left(k^2+k\right)\)
\(=n\left(n+1\right)+h\left(h+1\right)+b\left(b+1\right)+k\left(k+1\right)\)chia hết cho \(2\).
mà \(n+h+b+k\)chia hết cho \(6\)nên chia hết cho \(2\)
suy ra \(n^2+h^2+b^2+k^2\)chia hết cho \(2\)suy ra không phải là số nguyên tố
(do \(n^2+h^2+b^2+k^2>2\)).
* n = 3k
A = 2ⁿ - 1 = 2^3k - 1 = 8^k - 1 = (8-1)[8^(k-1) + 8^(k-2) +..+ 8 + 1] = 7p chia hết cho 7
* n = 3k+1
A = 2^(3k+1) -1 = 2.2^3k - 1 = 2(8^k - 1) + 1 = 2*7p + 1 chia 7 dư 1
* n = 3k+2
A = 2^(3k+2) -1 = 4.8^k -1 = 4(8^k - 1) + 3 = 4*7p + 3 chia 7 dư 3
Tóm lại A = 2ⁿ -1 chia hết cho 7 khi và chỉ khi n = 3k (k nguyên dương)