K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 6 2020

Bạn tham khảo:

Câu hỏi của khoimzx - Toán lớp 9 | Học trực tuyến

NV
20 tháng 5 2020

\(\frac{a}{b+2c}+\frac{a}{b+2a}\ge\frac{4a}{2a+2b+2c}=\frac{2a}{a+b+c}\)

Tương tự: \(\frac{b}{c+2a}+\frac{b}{c+2b}\ge\frac{2b}{a+b+c}\) ; \(\frac{c}{a+2b}+\frac{c}{a+2c}\ge\frac{2c}{a+b+c}\)

Cộng vế với vế:

\(\Rightarrow\frac{1}{2}.VT+\frac{a}{b+2a}+\frac{b}{c+2b}+\frac{c}{a+2c}\ge2\)

\(\Leftrightarrow VT+\frac{2a}{b+2a}+\frac{2b}{c+2b}+\frac{2c}{a+2c}\ge4\)

\(\Leftrightarrow VT+\left(1-\frac{b}{b+2a}\right)+\left(1-\frac{c}{c+2b}\right)+\left(1-\frac{a}{a+2c}\right)\ge4\)

\(\Leftrightarrow VT\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)

Dấu "=" xảy ra khi \(a=b=c\)

26 tháng 5 2019

a) Dùng (a+b)2≥4ab
Chia hai vế cho a+b ( vì ab khác 0)
Ta có a+b≥\(\frac{4ab}{a+b}\) (Chuyển ab sang a+b) ta có
\(\frac{a+b}{ab}\)\(\frac{4}{a+b}\) <=> \(\frac{1}{a}\)+\(\frac{1}{b}\)\(\frac{4}{a+b}\)

28 tháng 4 2019

Từ \(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)

Áp dụng BĐT Bu-nhi-a-cốp-xki ta có :

\(\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\left(a+a+b+b+c\right)\ge\left(1+1+1+1+1\right)^2\)

\(\Rightarrow\frac{2}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{25}{2a+2b+c}\)

Tương tự ta có :

\(\frac{2}{b}+\frac{2}{c}+\frac{1}{a}\ge\frac{25}{2b+2c+a}\)

\(\frac{2}{a}+\frac{1}{b}+\frac{2}{c}\ge\frac{25}{2a+b+2c}\)

Cộng từng vế BĐT ta thu được :

\(\frac{5}{a}+\frac{5}{b}+\frac{5}{c}\ge25P\)

\(\Leftrightarrow P\le\frac{5\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}{25}=1\)

Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=c=\frac{3}{5}\)

NV
19 tháng 6 2019

a/ BĐT sai, cho \(a=b=c=2\) là thấy

b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)

\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương

\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)

\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
23 tháng 6 2019

Ta có:

\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)

Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)

\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)