K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

Do đó: AMCKlà hình chữ nhật

b: Xét tứ giác AKMB có

AK//MB

AK=MB

Do đó: AKMB là hình bình hành

b: Xét tứ giác ADBK có 

I là trung điểm của AB

I là trung điểm của DK

Do đó: ADBK là hình bình hành

8 tháng 11 2017

Bạn vẽ được hình ko

8 tháng 11 2017

Tứ giác AMCK là hcn vì

AI=IC(I là trung điểm của AC)

IM=IK(K là điểm đối xứng vs M qua I)

=>Tứ giác AMCK là hình bình hành(DHNB số 5)

Xét tứ giác AMCK có góc M vuông

=> Hình bình hành AMCK là hcn

Tứ giác ACMB là hình bình hành vì

Ta có Bm ss AK (MC ss AK theo tính chắt hcn)

Xét tam giác ABC có BM=MC,AI=IC

=>IM là đường trung bình của tam giác ABC

=>IM ss Ab

Mà I nằm giữa M và K =>MK ss AB

=>ABMK là hình bình hành (DHNB số 1)

Vì AMCk là hcn nên chỉ cần MI vuông góc CA là hình vuông

13 tháng 11 2021

a, Vì M,I là trung điểm BC,AC nên MI là đtb tg ABC

Do đó \(AB=2MI=8\left(cm\right)\)

b, Vì I là trung điểm AC và MK nên AKMB là hbh

Do đó AK//MC hay AK//MB và \(AK=MC=MB\) (M là trung điểm BC)

Vậy AKMB là hbh

13 tháng 11 2021

a: Xét ΔACB có 

M là trung điểm của BC

I là trung điểm của AC

Do đó: MI là đường trung bình của ΔACB

Suy ra: \(MI=\dfrac{AB}{2}\)

hay AB=8

24 tháng 11 2021

QDSHYFT

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K