K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

Ta có:

\(\frac{4z-10y}{3}=\frac{10x-3z}{4}=\frac{3y-4x}{10}.\)

\(\Rightarrow\frac{3.\left(4z-10y\right)}{9}=\frac{4.\left(10x-3z\right)}{16}=\frac{10.\left(3y-4x\right)}{100}.\)

\(\Rightarrow\frac{12z-30y}{9}=\frac{40x-12z}{16}=\frac{30y-40x}{100}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{12z-30y}{9}=\frac{40x-12z}{16}=\frac{30y-40x}{100}=\frac{12z-30y+40x-12z+30y-40x}{9+16+100}=\frac{\left(12z-12z\right)-\left(30y-30y\right)+\left(40x-40x\right)}{125}=\frac{0}{125}=0.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{4z-10y}{3}=0\\\frac{10x-3z}{4}=0\\\frac{3y-4x}{10}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4z-10y=0\\10x-3z=0\\3y-4x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4z=10y\\10x=3z\\3y=4x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{z}{10}=\frac{y}{4}\\\frac{x}{3}=\frac{z}{10}\\\frac{y}{4}=\frac{x}{3}\end{matrix}\right.\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{10}.\)

\(\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{z}{10}\)\(2x+3y-z=40.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2x}{6}=\frac{3y}{12}=\frac{z}{10}=\frac{2x+3y-z}{6+12-10}=\frac{40}{8}=5.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{3}=5\Rightarrow x=5.3=15\\\frac{y}{4}=5\Rightarrow y=5.4=20\\\frac{z}{10}=5\Rightarrow z=5.10=50\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(15;20;50\right).\)

Chúc bạn học tốt!

Ko sai bạn ey

12 tháng 1 2022

{ x + y + z = 1 (1)

{ x² + y² + z² = 1 (2)

{ x³ + y³ + z³ = 1 (3)

(x + y + z)² = x² + y² + z² + 2(xy + yz + zx) 

⇒ 2(xy + yz + zx) = (x + y + z)² - (x² + y² + z²) = 1² - 1 = 0 ⇒ xy + yz + zx = 0

(x + y + z)³ = x³ + y³ + z³ + 3(x + y)(y + z)(z + x) 

⇒ 3(x + y)(y + z)(z + x) = (x + y + z)³ - (x³ + y³ + z³) = 1³ - 1 = 0

⇒ x + y = 0 hoặc y + z = 0 hoặc z + x = 0

@ Nếu  x + y = 0 ⇔ x = - y thay vào (1) ⇒ z = 1 , thay vào (2) ⇒ 2x² + 1 = 1 ⇒ x = 0; y = 0

⇒ S = 1

Tương tự cho trường hợp y + z = 0 và z + x = 0

30 tháng 10 2021

Ta có:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)

Thay tất cả giá trị x,y,z vào M ta được:

\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)

\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)

\(\Rightarrow M=2020+2021=4041\)

21 tháng 10 2021

\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{2x}{16}=\dfrac{3y}{36}=\dfrac{4z}{60}=\dfrac{x+y+z}{35}=\dfrac{2x+3y+4z}{112}\\ \Rightarrow\dfrac{x+y+z}{2x+3y+4z}=\dfrac{35}{112}=\dfrac{5}{16}\)

21 tháng 10 2021

          \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x}{8}=\dfrac{y}{12};\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

*  \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y+z}{8+12+15}=\dfrac{x+y+z}{45}\)                                       (1)

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{2x}{16}=\dfrac{3y}{36}=\dfrac{4z}{60}=\dfrac{2x+3y+4z}{16+36+60}=\dfrac{2x+3y+4z}{112}\)   (2)

(1)(2)=> \(\dfrac{x+y+z}{45}=\dfrac{2x+3y+4z}{112}=\dfrac{x+y+z}{2x+3y+4z}=\dfrac{45}{112}\)

         => A = \(\dfrac{45}{112}\)

30 tháng 7 2017

\(\dfrac{x}{3}=\dfrac{y}{2};\dfrac{x}{4}=\dfrac{z}{5}\)\(x+y-z=10\)

Ta có:

\(\dfrac{x}{3}=\dfrac{y}{2}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{8};\dfrac{x}{4}=\dfrac{z}{5}\Leftrightarrow\dfrac{x}{12}=\dfrac{z}{15}\)

\(\Rightarrow\dfrac{y}{8}=\dfrac{x}{12}=\dfrac{z}{15}\)\(x+y-z=10\)

AD tính chất DTS bằng nhau ta có:

\(\dfrac{y}{8}=\dfrac{x}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{12+8-15}=\dfrac{10}{5}=2\)

+) \(\dfrac{y}{8}=2\Rightarrow y=16\)

+) \(\dfrac{x}{12}=2\Rightarrow x=42\)

+) \(\dfrac{z}{15}=2\Rightarrow z=30\)

Vậy \(x=42;y=16;z=30\)

c,\(\dfrac{x}{2}=\dfrac{y}{5};\dfrac{y}{3}=\dfrac{z}{2}\)\(2x+3y-4z=34\)

Ta có:

\(\dfrac{x}{2}=\dfrac{y}{5}\Leftrightarrow\dfrac{x}{6}=\dfrac{y}{15};\dfrac{y}{3}=\dfrac{z}{2}\Leftrightarrow\dfrac{y}{15}=\dfrac{z}{10}\)

\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)

Ta lại có:

\(\dfrac{2x}{12}=\dfrac{3y}{45}=\dfrac{4z}{40}\)\(2x+3y-4z=34\)

AD tính chất DTS bằng nhau ta có:

\(\dfrac{2x}{12}=\dfrac{3y}{45}=\dfrac{4z}{40}=\dfrac{2x+3y-4z}{12+45-40}=\dfrac{34}{17}=2\)

+) \(\dfrac{2x}{12}=2\Rightarrow x=12\)

+) \(\dfrac{3y}{45}=2\Rightarrow y=30\)

+) \(\dfrac{4z}{40}=2\Rightarrow z=20\)

Vậy \(x=12;y=30;z=20\)

\(\)

31 tháng 7 2017

kcj