Xác định các số a, b, c sao cho: \(\dfrac{1}{x^2-4}=\dfrac{a}{x-2}+\dfrac{b}{x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quy đồng vế phải:
\(VP=\dfrac{a\left(x+1\right)\left(x+2\right)+b\left(x+2\right)+c\left(x+1\right)^2}{\left(x+1\right)^2\left(x+2\right)}\)
\(=\dfrac{ax^2+3ax+2a+bx+2b+cx^2+2cx+c}{\left(x+1\right)^2\left(x+2\right)}\)
\(=\dfrac{\left(a+c\right)x^2+\left(3a+b+2c\right)x+2a+2b+c}{\left(x+1\right)^2\left(x+2\right)}\)
Đồng nhất hệ số với tử số vế trái ta được:
\(\left\{{}\begin{matrix}a+c=0\\3a+b+2c=0\\2a+2b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=1\\c=1\end{matrix}\right.\)
a)\(x\in R\)
b)\(x\ne1\)
c) \(x\notin\left\{1;2\right\}\)
d) \(x\notin\left\{3;-3\right\}\)
e) \(x\ne1\)
f) \(x\notin\left\{2;3\right\}\)
a: \(=\dfrac{-3}{8}x^5\)
Hệ số là -3/8
Bậc là 5
b: \(=4x^2\cdot\dfrac{1}{8}=\dfrac{1}{2}\cdot x^2\)
Hệ sốlà 1/2
Bậc là 2
c: \(=\dfrac{16}{25}x^2\cdot\dfrac{15}{2}x^3=\dfrac{24}{5}x^5\)
Hệ số là 24/5
Bậc là 5
d: \(=\dfrac{2}{9}\cdot\dfrac{9}{4}\cdot x^2=\dfrac{1}{2}x^2\)
Hệ số là 1/2
Bậc là 2
e: \(=\dfrac{9}{25}x^2\cdot\dfrac{25}{4}x^6=\dfrac{9}{4}x^8\)
Hệ số là 9/4
Bậc là 8
a) \(\dfrac{5x}{10}=\dfrac{x}{2}\)
b) \(\dfrac{4xy}{2y}=2x\left(y\ne0\right)\)
c) \(\dfrac{5x-5y}{3x-3y}=\dfrac{5}{3}\left(x\ne y\right)\)
d) \(\dfrac{x^2-y^2}{x+y}=x-y\left(đk:x\ne-y\right)\)
e) \(\dfrac{x^3-x^2+x-1}{x^2-1}=\dfrac{x^2+1}{x+1}\left(đk:x\ne\pm1\right)\)
f) \(\dfrac{x^2+4x+4}{2x+4}=\dfrac{x+2}{2}\left(đk:x\ne-2\right)\)
a) Biểu thức \(4{x^2} - 1\) có nghĩa với mọi \(x \in \mathbb{R}\)
Vậy tập xác định của hàm số này là \(D = \mathbb{R}\)
b) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \({x^2} + 1 \ne 0,\)tức là với mọi \(x \in \mathbb{R}\)
Vậy tập xác định của hàm số này là \(D = \mathbb{R}\)
c) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \(\frac{1}{x}\) có nghĩa, tức là khi \(x \ne 0,\)
Vậy tập xác định của hàm số này là \(D = \mathbb{R}{\rm{\backslash }}\{ 0\} \)
Quy đồng vế phải:
\(VP=\dfrac{a\left(x+2\right)+b\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(a+b\right)x+2a-2b}{x^2-4}\)
Đồng nhất tử số vế phải và vế trái ta được:
\(\left\{{}\begin{matrix}a+b=0\\2a-2b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{4}\\b=-\dfrac{1}{4}\end{matrix}\right.\)