Cho hai hộp trong đó hộp 1 chứa 6 viên bi vàng và 3 viên bị đỏ. Hộp 2 chứa 5 viên bị vàng và 4 viên bi đỏ. Mỗi hộp lấy ngẫu nhiên 1 viên bi. Tính xác suất để hai viên bi chọn được cùng màu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.
\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)
A: "Hai viên bi chọn được cùng màu".
TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)
TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)
\(\Rightarrow n(A)=30+12=42\)
\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).
Không gian mẫu: \(C_9^1.C_8^1=72\)
a. Lấy được 2 bi trắng khi bi lấy ra từ cả 2 hộp đều trắng
Số biến cố thuận lợi: \(C_5^1.C_6^1=30\)
Xác suất: \(P=\dfrac{30}{72}=...\)
b. Số cách lấy cả 2 có ít nhất 1 vàng: \(72-30=42\)
Xác suất: \(P=\dfrac{42}{72}=...\)
Không gian mẫu là chọn ngẫu nhiên mỗi hộp 2 viên bi.
Suy ra số phần tử của không gian mẫu là .
Gọi A là biến cố 4 viên bi được chọn luôn có bi đỏ nhưng không có bi xanh . Ta liệt kê các trường hợp thuận lợi của không gian biến cố A như sau:
● Trường hợp 1. Chọn hộp thứ nhất 2 viên bi đỏ, có cách.
Chọn hộp thứ hai 2 viên bi từ 8 viên bi (2 đỏ và 6 vàng), có cách.
Do đó trường hợp này có cách.
● Trường hợp 2. Chọn hộp thứ nhất 1 viên bi đỏ và 1 viên bi vàng, có cách.
Chọn hộp thứ hai 2 viên bi từ 8 viên bi (2 đỏ và 6 vàng), có cách.
Do đó trường hợp này có cách.
● Trường hợp 3. Chọn hộp thứ nhất 2 viên bi vàng, có cách.
Chọn hộp thứ hai 2 viên bi đỏ hoặc 1 viên bi đỏ và 1 viên bi vàng, có cách.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố A là
Vậy xác suất cần tính
Chọn B.
Đáp án D.
1. Tìm không gian mẫu.
Bạn Hà lấy ngẫu nhiên 2 viên bi có C 6 2 trường hợp.
Bạn Lâm lấy ngẫu nhiên 2 viên bi trong 4 viên còn lại có C 4 2 trường hợp.
Bạn Anh lấy 2 viên bi còn lại có 1 trường hợp.
Vậy n Ω = C 6 2 . C 4 2 = 90 .
2. Gọi A là biến cố “Hai viên bi bạn Anh lấy ra có cùng màu”.
Trường hợp 1: Hai viên bi bạn Anh lấy ra có cùng màu đỏ thì số trường hợp xảy ra là C 4 2 . C 2 2 .1 = 6 .
Trường hợp 2: Hai viên bi bạn Anh lấy ra có cùng màu xanh thì số trường hợp xảy ra là C 4 2 . C 2 2 .1 = 6
Trường hợp 3: Hai viên bi bạn Anh lấy ra có cùng màu vàng thì số trường hợp xảy ra là C 4 2 . C 2 2 .1 = 6 .
⇒ n A = 6.3 = 18 ⇒ P A = n A n Ω = 18 90 = 1 5
Không gian mẫu là số cách chọn ngẫu nhiên 6 viên bi từ hộp chứa 14 viên bi.
Suy ra số phần tử của không gian mẫu là
Gọi A là biến cố 6 viên bi được lấy ra có đủ cả ba màu . Để tìm số phần tử của biến cố A ta đi tìm số phần tử của biến cố tức là 6 viên bi lấy ra không có đủ ba màu như sau:
● Trường hợp 1. Chọn 6 viên bi chỉ có một màu (chỉ chọn được màu vàng).
Do đó trường hợp này có cách.
● Trường hợp 2. Chọn 6 viên bi có đúng hai màu xanh và đỏ, có cách.
Chọn 6 viên bi có đúng hai màu đỏ và vàng, có cách.
Chọn 6 viên bi có đúng hai màu xanh và vàng, có cách.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố .
Suy ra số phần tử của biến cố A là
Vậy xác suất cần tính
Chọn B.
Đáp án B
Có các cách chọn sau:
+) 1 bi đỏ, 1 bi vàng, 3 bi xanh, suy ra có C 6 1 C 7 1 C 5 3 = 420 cách.
+) 2 bi đỏ, 2 bi vàng, 1 bi xanh, suy ra có C 6 2 C 7 2 C 5 1 = 1575 cách.
Suy ra xác suất bằng 420 + 1575 C 18 5 = 95 408 .
Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.
\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)
A: "Hai viên bi chọn được cùng màu".
TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)
TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)
\(\Rightarrow n(A)=30+12=42\)
\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).