K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2020

Ta có: a+b+c=0

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

Ta có: \(P=\dfrac{ab^2}{a^2+b^2-c^2}+\dfrac{bc^2}{b^2+c^2-a^2}+\dfrac{ca^2}{c^2+a^2-b^2}\)

\(=\dfrac{ab^2}{\left(a+b\right)^2-c^2-2ab}+\dfrac{bc^2}{\left(b+c\right)^2-a^2-2bc}+\dfrac{ca^2}{\left(c+a\right)^2-b^2-2ac}\)

\(=\dfrac{ab^2}{\left(a+b+c\right)\left(a+b-c\right)-2ab}+\dfrac{bc^2}{\left(b+c+a\right)\left(b+c-a\right)-2bc}+\dfrac{ca^2}{\left(c+a+b\right)\left(c+a-b\right)-2ac}\)

\(=\dfrac{ab^2}{-2ab}+\dfrac{bc^2}{-2bc}+\dfrac{ca^2}{-2ac}\)

\(=\dfrac{-ab\cdot b}{2ab}+\dfrac{-bc^2}{2bc}+\dfrac{-ca^2}{2ac}\)

\(=\dfrac{-b}{2}+\dfrac{-c}{2}+\dfrac{-a}{2}=\dfrac{-\left(a+b+c\right)}{2}=\dfrac{0}{2}=0\)

NV
13 tháng 11 2021

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{a}=\dfrac{1}{b}\end{matrix}\right.\) \(\Rightarrow a=b=c\)

\(\Rightarrow M=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

NV
27 tháng 12 2020

\(a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3abc\)

\(A=\dfrac{a^3+b^3+c^3}{abc}=\dfrac{3abc}{abc}=3\)

24 tháng 11 2023

\(A=\dfrac{bc}{8a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}\)

\(=\dfrac{\left(bc\right)^3+8\left(ca\right)^3+8\left(ab\right)^3}{8\left(abc\right)^2}\)

\(=\dfrac{\left(bc\right)^3+\left(2ca\right)^3+\left(2ab\right)^3}{8\left(abc\right)^2}\)

\(=\dfrac{\left(bc\right)^3+\left(2ab+2ca\right)^3-3.2ca.2ab\left(2ab+2ca\right)}{8\left(abc\right)^2}\)

\(=\dfrac{\left(bc\right)^3+\left(-bc\right)^3-3.2ca.2ab.\left(-bc\right)}{8\left(abc\right)^2}\)

\(=\dfrac{12\left(abc\right)^2}{8\left(abc\right)^2}=\dfrac{12}{8}\)

24 tháng 11 2023

kkkk

26 tháng 12 2021

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)

\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ac-ab}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)

CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}=\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

5 tháng 1 2022

Vì sao bước thứ 2 từ dưới lên lại có thể suy ra (a−b)(b−c)(a−c)/(a−b)(b−c)(a−c)=1?

 
NV
3 tháng 3 2021

\(N=\dfrac{\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3}{\left(ab\right)\left(bc\right)\left(ca\right)}\)

Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\Rightarrow N=\dfrac{x^3+y^3+z^3}{xyz}\)

\(N=\dfrac{x^3+y^3+z^3-3xyz+3xyz}{xyz}=\dfrac{\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]+3xyz}{xyz}=\dfrac{3xyz}{xyz}=3\)

 

NV
20 tháng 12 2020

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\Rightarrow\left\{{}\begin{matrix}bc=-ab-ac\\ab=-bc-ac\\ac=-ab-bc\end{matrix}\right.\)

\(M=\dfrac{1}{a^2+bc-ab-ac}+\dfrac{1}{b^2+ac-ab-bc}+\dfrac{1}{c^2+ab-bc-ac}\)

\(=\dfrac{1}{a\left(a-b\right)-c\left(a-b\right)}+\dfrac{1}{b\left(b-c\right)-a\left(b-c\right)}+\dfrac{1}{c\left(c-a\right)-b\left(c-a\right)}\)

\(=\dfrac{1}{\left(a-b\right)\left(a-c\right)}-\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(a-c\right)\left(b-c\right)}\)

\(=\dfrac{b-c-\left(a-c\right)+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2018

Bài 1:

Từ \(a+b+c=0\) ta có:

\(B=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-b^2-a^2}\)

\(=\frac{a^2}{(-b-c)^2-b^2-c^2}+\frac{b^2}{(-c-a)^2-c^2-a^2}+\frac{c^2}{(-b-a)^2-b^2-a^2}\)

\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Lại có:

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3\)

\(=-c^3+3abc+c^3=3abc\)

Do đó \(B=\frac{3abc}{2abc}=\frac{3}{2}\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2018

Bài 2:

Lấy P-Q ta có:

\(P-Q=\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)\)

\(P-Q=\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ac+a^2}\)

\(P-Q=\frac{(a-b)(a^2+ab+b^2)}{a^2+ab+b^2}+\frac{(b-c)(b^2+bc+c^2)}{b^2+bc+c^2}+\frac{(c-a)(c^2+ac+a^2)}{c^2+ac+a^2}\)

\(P-Q=(a-b)+(b-c)+(c-a)=0\Rightarrow P=Q\)

Ta có đpcm.