K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2016

\(\frac{3}{x}=\frac{x}{12}\Leftrightarrow x^2=3.12=36\Leftrightarrow x^2=6^2=\left(-6\right)^2\Leftrightarrow x\in\left\{-6;6\right\}\)

+) Với x = -6:

\(-\frac{6}{12}=-\frac{1}{2}=\frac{y+1}{4}\Leftrightarrow2.\left(y+1\right)=-4\Leftrightarrow y+1=-2\Leftrightarrow y=-3\)

\(-\frac{6}{12}=-\frac{1}{2}=\frac{z^2-1}{16}\Leftrightarrow2.\left(z^2-1\right)=-16\Leftrightarrow z^2-1=-8\Leftrightarrow z^2=-7\left(\text{vô lí}\right)\)

=> Không có x , y , z thỏa mãn.

+) Với x = 6:

\(\frac{6}{12}=\frac{y+1}{4}\Leftrightarrow12.\left(y+1\right)=24\Leftrightarrow y+1=2\Leftrightarrow y=1\)

\(\frac{6}{12}=\frac{z^2-1}{16}\Leftrightarrow12.\left(z^2-1\right)=96\Leftrightarrow z^2-1=8\Leftrightarrow z^2=9\Leftrightarrow z\in\left\{-3;3\right\}\)

Vậy các cặp (x;y;z) thỏa là: (6;1;-3); (6;1;3).

7 tháng 2 2016

3/x = x/12 => x2 = 3.12 = 36 => x = 6;-6

-Trường hợp 1:x = 6 thì :3/6 = y+1 /4 => 6(y+1) = 3.4 =12 => y = 12 : 6 -1=1

                                    3/6 = z2-1 /16 => 6(z2-1) = 3.16 =48 => z2 = 48 :6 + 1 = 9 => z = -3 ; 3

-Trường hợp 2:x = -6 thì :3/-6 = y+1 /4 => -6(y+1) = 3.4 =12 => y = 12 :(-6) -1 = -3

                                     3/-6 = z2-1 /16 => -6(z2-1) = 3.16 =48 => z2 = 48 :(-6) + 1 = -7(vô lý)

Vậy x = 6 ; y = 1 ; z = 3 hoặc -3 

7 tháng 2 2016

3/x=x/12=>x2=36=>x=6 hoặc x=-6

*với x=-6 thì -6/12=z2-1/16=>-1/2=z2-1/16

=>z2-1=-8=>z2=-7(loại)

=>x=6=>1/2=y+1/4=>y+1=2=>y=1

=>1/2=z2-1/16=>z2-1=8=>z2=9=>z=3 hoặc z=-9

16 tháng 5 2019

x=3

y=28

z=60

16 tháng 5 2019

Rút gọn phân số : \(\frac{12}{16}=\frac{12:4}{16:4}=\frac{3}{4}\)

Ta có : \(\frac{3}{4}=\frac{x}{4}\)

\(\Rightarrow3=x\Leftrightarrow x=3\)

Ta lại có : \(\frac{3}{4}=\frac{21}{y}\)

\(\Rightarrow3y=84\)

\(\Rightarrow y=84:3=28\)

Ta lại có : \(\frac{3}{4}=\frac{z}{80}\)

\(\Rightarrow3\cdot80=4z\)

\(\Rightarrow z=\frac{3\cdot80}{4}=60\)

30 tháng 3 2020

a/ 2x = 5y và x - 2y = -12

Ta có: 2x = 5y => \(\frac{x}{5}=\frac{y}{2}\)

Áp dụng: tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5+2}=\frac{x-2y}{5+2.2}=\frac{-12}{9}=-\frac{4}{3}\)

\(\frac{x}{5}=-\frac{4}{3}\Rightarrow x=\frac{-4}{3}.5=-\frac{20}{3}\)

\(\frac{y}{2}=-\frac{4}{3}\Rightarrow y=-\frac{4}{3}.2=-\frac{8}{3}\)

Vậy:.................

b/ 2x = 3y = 4z và x + y + z =21

Ta có: 2x = 3y = 4z

=> \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)

=> \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Áp dụng: tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{21}{13}\)

\(\frac{x}{6}=\frac{21}{13}\Rightarrow x=\frac{21}{13}.6=\frac{126}{13}\)

\(\frac{y}{4}=\frac{21}{13}\Rightarrow y=\frac{21}{13}.4=\frac{84}{13}\)

\(\frac{z}{3}=\frac{21}{13}\Rightarrow z=\frac{21}{13}.3=\frac{63}{13}\)

Vậy:...............

c/Áp dụng: tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{32}{8}=4\)

\(\frac{x}{3}=4\Rightarrow x=4.3=12\)

\(\frac{y}{5}=4\Rightarrow y=4.5=20\)

Vậy:................

d/ Ta có: 7x = 3y

=> \(\frac{7x}{21}=\frac{3y}{21}\)

=> \(\frac{x}{3}=\frac{y}{7}\)

Áp dụng: tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)

\(\frac{x}{4}=-4\Rightarrow x=\left(-4\right).4=-16\)

\(\frac{y}{7}=-4\Rightarrow y=\left(-4\right).7=-28\)

Vậy:................

30 tháng 3 2020

bạn ơi còn mà

30 tháng 7 2018

a, \(\frac{x}{y+z+1}=\frac{y}{x+z+3}=\frac{z}{x+y-4}=\frac{x+y+z}{y+z+1+x+z+3+x+y-4}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

=>\(x+y+z=\frac{1}{2};\frac{x}{y+z+1}=\frac{1}{2};\frac{y}{x+z+3}=\frac{1}{2};\frac{z}{x+y-4}=\frac{1}{2}\)

=>\(\hept{\begin{cases}y+z+1=2x\\x+z+3=2y\\x+y-4=2z\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+3=3y\\x+y+z-4=3z\end{cases}\Rightarrow\hept{\begin{cases}3x=\frac{1}{2}+1\\3y=\frac{1}{2}+3\\3z=\frac{1}{2}-4\end{cases}}}\Rightarrow\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{7}{2}\\3z=\frac{-7}{2}\end{cases}}\)

đến đây dễ rồi

b, =>(x-18)(x+16)=(x+4)(x-17)

=>x2+16x-18x-288=x2-17x+4x-68

=>x2-2x-288-x2+13x+68=0

=>11x-220=0

=>11x=220

=>x=20

mik ko bít

I don't now

................................

.............

b, ta có : x/3 = y/5 -> x/6 = y/10 ; y/2 = z/4 -> y/10 = z/20 . suy ra : x/6 = y/10 = z/20

áp dụng dãy tỉ số bằng nhau ta có : x/6 = y/10 = z/20 = 2x + y - z / 12 + 10 - 20 = 16 / 2 = 8 

suy ra : x/6 = 8 -> x = 48 

            y = 80

            z = 160

a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)

Tự làm nốt và kết luận 

b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)

Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)

Vậy ....

b) \(\frac{x-1}{2}=\frac{2x-2}{4}\)

\(\frac{y-2}{3}=\frac{3y-6}{9}\)

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z+3-2-6}{9}=\frac{50+3-2-6}{9}=\frac{45}{9}=5\)=>x-1=5.2=10

=>x=11

y-2=5.3=15

=>y=17

z-3=5.4=20

=>z=23

Vậy (x;y;z)=(11;17;23)

10 tháng 11 2019

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+x-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(vì x+y+z khác 0).Do đó x+y+z = 0.5

Thay kq này vào bài ta được:

\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)

Tức là : \(\frac{1,5-x}{x}=\frac{2,5-y}{y}=\frac{-2,5-z}{z}=2\)

Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=\frac{-5}{6}\)