TÌM SỐ TỰ NHIÊN n để 10-2n chia hết cho n - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2n + 11 chia hết cho n + 3
⇒ 2n + 6 + 5 chia hết cho n + 3
⇒ 2(n + 3) + 5 chia hết cho n + 3
⇒ 5 chia hết cho n + 3
⇒ n + 3 ∈ Ư(5) = {1; -1; 5; -5}
⇒ n ∈ {-2; -4; 2; -8}
Mà n là số tự nhiên
⇒ n ∈ {2}
b) n + 5 chia hết cho n - 1
⇒ n - 1 + 6 chia hết cho n - 1
⇒ 6 chia hết cho n - 1
⇒ n - 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {2; 0; 3; -1; 4; -2; 7; -5}
Mà n là số tự nhiên
⇒ n ∈ {2; 0; 3; 4; 7}
c) 3n + 10 chia hết cho n + 2
⇒ 3n + 6 + 4 chia hết cho n + 2
⇒ 3(n + 2) + 4 chia hết cho n + 2
⇒ 4 chia hết cho n + 2
⇒ n + 2 ∈ Ư(4) = {1; -1; 2; -2; 4; -4}
⇒ n ∈ {-1; -3; 0; -4; 2; -6}
Mà n là số tự nhiên
⇒ n ∈ {0; 2}
d) 2n + 7 chia hết cho 2n + 1
⇒ 2n + 1 + 6 chia hết cho 2n + 1
⇒ 6 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {0; -1; 1/2; -3/2; 1; -2; 5/2; -7/2}
Mà n là số tự nhiên
⇒ n ∈ {0; 1}
Tham khảo nhé:
n=5a+4b�=5�+4�
a)
Để n� chia hết cho 2 thì 5a5� ⋮⋮ 22 và 4b4� ⋮⋮ 22.
mà 5a5� ⋮⋮ 22 thì a� ⋮⋮ 22
còn 4b4� ⋮⋮ 22 thì luôn đúng.
Vậy để n� ⋮⋮ 22 thì a� ⋮⋮ 22, hay a={2k,k∈N}�={2�,�∈�} và b∈N�∈�
b)
Để n� chia hết cho 5 thì 5a5� ⋮⋮ 55 và 4b4� ⋮⋮ 55.
mà 5a5� ⋮⋮ 55 thì luôn đúng
còn 4b4� ⋮⋮ 22 thì b� ⋮⋮ 55.
Vậy để n� ⋮⋮ 55 thì b� ⋮⋮ 55, hay b={5k,k∈N}�={5�,�∈�} và a∈N�∈�
c)
Để n� chia hết cho 10 thì 5a5� ⋮⋮ 1010 và 4b4� ⋮⋮ 1010.
mà 5a5� ⋮⋮ 1010 thì a� ⋮⋮ 22
còn 4b4� ⋮⋮ 1010 thì b� ⋮⋮ 55.
Vậy để n� ⋮⋮ 1010 thì a� ⋮⋮ 22 và b� ⋮⋮ 55,
hay a=2k,b=5h;k,h∈N�=2�,�=5ℎ;�,ℎ∈�
Giải thích:
Số chia hết cho 2 là số chẵn có dạng 2k,k∈Z2�,�∈�
Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng 5k,k∈Z5�,�∈�
Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là 10k,k∈Z
THAM KHẢO nhé:
n=5a+4b
�=5�+4�
a)
Để n� chia hết cho 2 thì 5a5� ⋮⋮ 22 và 4b4� ⋮⋮ 22.
mà 5a5� ⋮⋮ 22 thì a� ⋮⋮ 22
còn 4b4� ⋮⋮ 22 thì luôn đúng.
Vậy để n� ⋮⋮ 22 thì a� ⋮⋮ 22, hay a={2k,k∈N}�={2�,�∈�} và b∈N�∈�
b)
Để n� chia hết cho 5 thì 5a5� ⋮⋮ 55 và 4b4� ⋮⋮ 55.
mà 5a5� ⋮⋮ 55 thì luôn đúng
còn 4b4� ⋮⋮ 22 thì b� ⋮⋮ 55.
Vậy để n� ⋮⋮ 55 thì b� ⋮⋮ 55, hay b={5k,k∈N}�={5�,�∈�} và a∈N�∈�
c)
Để n� chia hết cho 10 thì 5a5� ⋮⋮ 1010 và 4b4� ⋮⋮ 1010.
mà 5a5� ⋮⋮ 1010 thì a� ⋮⋮ 22
còn 4b4� ⋮⋮ 1010 thì b� ⋮⋮ 55.
Vậy để n� ⋮⋮ 1010 thì a� ⋮⋮ 22 và b� ⋮⋮ 55,
hay a=2k,b=5h;k,h∈N�=2�,�=5ℎ;�,ℎ∈�
Giải thích:
Số chia hết cho 2 là số chẵn có dạng 2k,k∈Z2�,�∈�
Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng 5k,k∈Z5�,�∈�
Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là 10k,k∈Z
3n + 29 chia hết cho n + 3 <=> 20 chia hết chi n+3 <=> n+3 thuộc Ư(20)={1,2,4,5,10,20}
Với n + 3 = 1 => n không thuộc N (loại)
Với n + 3 = 2 => n không thuộc N (loại)
Với n + 3 = 4 => n = 1
Với n + 3 = 5 => n = 2
Với n+3 = 10 => n = 7
Với n + 3 = 20 => n = 17
3n + 29 chia hết cho n + 3 <=> 20 chia hết chi n+3 <=> n+3 thuộc Ư(20)={1,2,4,5,10,20}
Với n + 3 = 1 => n không thuộc N (loại)
Với n + 3 = 2 => n không thuộc N (loại)
Với n + 3 = 4 => n = 1
Với n + 3 = 5 => n = 2
Với n+3 = 10 => n = 7
Với n + 3 = 20 => n = 17
Ta có: (n-1)/(n-6)=[(n-6)+5]/(n-6)=(n-6)/(n-6)+5/(n-6)=1+5/(n-6)
Vì 1 là số tự nhiên nên để n-1 chia hết cho 6 thì 5/(n-6) phải là số tự nhiên nên 5 phải chia hết cho n-6
Nghĩa là: n-6 thuộc ước của 5={1;5}
Do đó
n-6 | 1 | 5 |
n | 7 | 11 |
Vậy với n thuộc {7;11} thì n-1 chia hết cho n-6
Lời giải:
Với mọi số tự nhiên $b$ thì $6b=3.2b\vdots 3$ nên để $n=5a+6b\vdots 3$ thì $5a\vdots 3$
Mà $5\not\vdots 3$ nên điều này xảy ra khi $a\vdots 3$
Vậy với mọi số tự nhiên $b$ và mọi số tự nhiên $a$ sao cho $a\vdots 3$ thì $n=5a+6b\vdots 3$
\(Ư\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
2n+3 | 1 | 2 | 3 | 4 | 6 | 12 |
2n | -2(loại) | -1(loại) | 0 | 1(loại) | 3(loại) | 9(loại) |
n | 0 |
(Ta loại với giá trị 2n là số lẻ hoặc số âm)
Vậy \(n=0\)
Vì \(12⋮2n+3\) nên
\(2n+3\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
Lập bảng:
2n+3 | 1 | 2 | 3 | 4 | 6 | 12 |
n | -1 | -1/2 | 0 | 1/2 | 3/2 | 9/2 |
Vậy \(n\in\left\{-1;-\dfrac{1}{2};0;\dfrac{1}{2};\dfrac{3}{2};\dfrac{9}{2}\right\}\)