K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMAO và ΔMCO có

MA=MC

AO=CO

MO chung

=>ΔMAO=ΔMCO

=>góc MCO=90 độ

góc MAO+góc MCO=180 độ

=>MAOC nội tiếp đường tròn đường kính MO

=>I là trung điểm của MO

b: góc MCO=90 độ

=>MC là tiếp tuyến của (O)

Xét ΔMCD và ΔMBC có

góc MCD=góc MBC

góc CMD chung

=>ΔMCD đồng dạng với ΔMBC

=>MC/MB=MD/MC

=>MC^2=MB*MD

a: Xét tứ giác OBDM có

góc OBD+góc OMD=180 độ

=>OBDM là tư giác nội tiếp

c: Xét ΔKOB và ΔKFE có

góc KOB=góc KFE

góc OKB=góc FKE

=>ΔKOB đồng dạng với ΔKFE
=>KO/KF=KB/KE

=>KO*KE=KB*KF

a: góc ADB=1/2*sđ cung AB=90 độ

=>AD vuông góc MB

Xét (O) có

MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc AC tại E

góc AEM=góc ADM=90 độ

=>AEDM nội tiếp

b: Xét ΔMAB vuông tại A có AD vuông góc MB

nên MA^2=MD*MB

6 tháng 6 2021

a. xét tứ giác OBMD có

∠DBO=90 ( tiếp tuyến By)

∠OMD=90 (tiếp tuyến tại M)

⇒∠DBO+∠OMD=90+90=180

⇒tứ giác OBMD nội tiếp

b.ΔOBF cân tại O do OB=OF=R

⇒∠B1=∠F1 (1)

có ∠E1=∠B(cùng phụ ∠EOB) (2)

từ (1);(2) ⇒∠F1=∠E1 (cùng nhìn OB)

⇒OFEB nội tiếp

⇒∠OFE=∠OBE=90

⇒EF⊥OF

⇒EF là tiếp tuyến của (O)

c. xét ΔKFO và ΔKEB có

∠FKO=∠EKB=90

∠E1=∠F1

⇒ΔKFO ∼ ΔKEB (g.g)

\(\dfrac{KO}{KB}=\dfrac{KF}{KE}\)⇒KO.KE=KF.KB

a: Xét (O) có
MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên MO là trung trực của AC

=>MO vuông góc AC tại E

góc ADB=1/2*sđ cung AB=90 độ

=>AD vuông góc MB

góc ADM=góc AEM=90 độ

=>AMDE nội tiếp

b: ΔMAB vuông tại A có AD là đường cao

nên MA^2=MD*MB