K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

M = x+y/z + x+z/y + y+z/x

M = x+y+z/z + x+y+z/y + x+y+z/x - z/z - y/y - x/x

M = (x+y+z).(1/z + 1/y + 1/x) - 1 - 1 - 1

M = 2020.1/202 - 3

M = 10 - 3 = 7

18 tháng 12 2016

đg cần

21 tháng 9 2016

a) vì y+z+1/x = x+z+2/y = x+y-3/z = 1/x+y+z

=>

y+z+1/x = x+z+2/y = x+y-3=y+z+1+x+z+2+x+y-3/x+y+z = 2x+2y+2z/x+y+z = 2

=> 2 = 1/ x+y+z => x+y+z=1/2

sau đó áp dụng tính chất dãy tỉ số = hau

8 tháng 1 2018

Ta có : \(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\) = \(\frac{2017}{672}\)

\(\Leftrightarrow\frac{x+y+z}{x+y}+\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}=\)\(\frac{2017}{672}\)

\(\Leftrightarrow1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{z}{z+x}\)\(\frac{2017}{672}\)

\(\Rightarrow A=\frac{2017}{672}-3\)

18 tháng 10 2019

ADTC dãy tỉ số bằng nhau đc ko hay pk mấy cái cosi hay cot , tan , .... 

AH
Akai Haruma
Giáo viên
19 tháng 11 2019

Lời giải:

Từ điều kiện đề bài suy ra $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}$

$\Leftrightarrow \frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0$

$\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0$

$\Leftrightarrow (x+y)\left[\frac{1}{xy}+\frac{1}{z(x+y+z)}\right]=0$

$\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0$

$\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0$

$\Rightarrow (x+y)(y+z)(x+z)=0$

Do đó: $M=\frac{x+y}{z}.\frac{x+z}{y}.\frac{y+z}{x}=\frac{(x+y)(y+z)(x+z)}{xyz}=\frac{0}{xyz}=0$

10 tháng 7 2016

\(A=\frac{x+y}{z}+1+\frac{x+z}{y}+1+\frac{y+z}{x}+1-3\)

\(A=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}-3\)

\(A=\left(x+y+z\right)\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-3=\left(z+y+z\right)\cdot0-3=-3\)

Vậy, A = -3

10 tháng 7 2016

cảm ơn bạn nha

5 tháng 1 2019

3x+x+12=0