thpt
1 trên x - 2 - 1 trên x + 2 + 4x - x2 trên 4 - x2
tick ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ \(xy\left(3x-2y\right)-2xy^2\)
\(=xy\left(3x-2y-2y\right)\)
\(=3x^2y\)
+ \(\left(x^2+4x+4\right)\left(x+2\right)\)
\(=\left(x+2\right)^2\left(x+2\right)\)
\(=\left(x+2\right)^3\)
+ \(\dfrac{2\left(x-1\right)}{x^2}-\dfrac{x}{x-1}\)
\(=\dfrac{2\left(x-1\right)^2-x^3}{x^2\left(x-1\right)}\)
\(=\dfrac{2\left(x^2-2x+1\right)-x^3}{x^2\left(x-1\right)}\)
\(=\dfrac{2x^2-4x+2-x^3}{x^2\left(x-1\right)}\)
\(=\dfrac{-x^3+2x^2-4x+1}{x^2\left(x-1\right)}\)
\(\frac{x^2+2}{2xy^3}-\frac{2x+2}{2xy^3}=\frac{x^2+2-2x-2}{2xy^3}=\frac{x^2-2x}{2xy^3}=\frac{x\left(x-2\right)}{2xy^3}=\frac{x-2}{2y^3}\)
\(\frac{4}{x-5}-\frac{1}{x+5}+\frac{13x-x^2}{25-x^2}=\frac{4}{x-5}-\frac{1}{x+5}+\frac{x^2-13x}{x^2-25}\)
\(=\frac{4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{\left(x-5\right)\left(x+5\right)}+\frac{x^2-13x}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{4x+20-x+5+x^2-13x}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\frac{x-5}{x+5}\)
b:
ĐKXĐ: \(x\notin\left\{0;2;-2\right\}\)
\(\left(\dfrac{4}{x^3-4x}+\dfrac{1}{x+2}\right):\left(\dfrac{x-2}{x^2+2x}-\dfrac{x}{2x+4}\right)\)
\(=\left(\dfrac{4}{x\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right):\left(\dfrac{x-2}{x\left(x+2\right)}-\dfrac{x}{2\left(x+2\right)}\right)\)
\(=\dfrac{4+x\left(x-2\right)}{x\left(x-2\right)\cdot\left(x+2\right)}:\dfrac{2\left(x-2\right)-x^2}{x\left(x+2\right)\cdot2}\)
\(=\dfrac{x^2-2x+4}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{2x\left(x+2\right)}{-\left(x^2-2x+4\right)}\)
\(=\dfrac{-2}{x-2}\)
c:ĐKXĐ: x<>0
\(\left(x-\dfrac{3}{x}\right):\left(\dfrac{x^2+2x+1}{x}-\dfrac{2x+4}{x}\right)\)
\(=\dfrac{x^2-3}{x}:\dfrac{x^2+2x+1-2x-4}{x}\)
\(=\dfrac{x^2-3}{x}\cdot\dfrac{x}{x^2-3}\)
=1
a)\(\frac{3y}{4x}+\frac{5y}{4x}=\frac{3y+5y}{4x}=\frac{8y}{4x}=\frac{2y}{x}\)
b)\(\frac{x^2+1}{2x-4}-\frac{7x}{2-x}=\frac{x^2+1}{2\left(x-2\right)}-\frac{-7x}{x-2}\)
\(=\frac{x^2+1}{2\left(x-2\right)}-\frac{-7x\times2}{\left(x-2\right)\times2}=\frac{x^2+1+14x}{2\left(x-2\right)}\)
\(5,\dfrac{4}{x-2}+\dfrac{x}{x+1}-\dfrac{x^2-2}{\left(x-2\right)\left(x+1\right)}=0\left(dkxd:x\ne2;-1\right)\)
\(\Rightarrow4\left(x+1\right)+x\left(x-2\right)-x^2-2=0\)
\(\Rightarrow4x+4+x^2-2x-x^2-2=0\)
\(\Rightarrow2x+2=0\)
\(\Rightarrow x=-1\left(loai\right)\)
Vậy \(S=\varnothing\)
Đáp án D
Hàm số luôn xác định trên .
Mặt khác ; .
Ta có: .
Vì vậy .
a) Để rút gọn biểu thức (x+2)(x^2+4x+4)-(x-2)(x^2-4x-4)-12x^2-x, ta thực hiện các bước sau:
(x+2)(x^2+4x+4) = x(x^2+4x+4) + 2(x^2+4x+4)
= x^3 + 4x^2 + 4x + 2x^2 + 8x + 8
= x^3 + 6x^2 + 12x + 8
(x-2)(x^2-4x-4) = x(x^2-4x-4) - 2(x^2-4x-4)
= x^3 - 4x^2 - 4x - 2x^2 + 8x + 8
= x^3 - 6x^2 + 4x + 8
Thay vào biểu thức ban đầu, ta có:
(x+2)(x^2+4x+4)-(x-2)(x^2-4x-4)-12x^2-x
= (x^3 + 6x^2 + 12x + 8 - (x^3 - 6x^2 + 4x - 12x^2 - x
= x^3 + 6x^2 + 12x + 8 - x^3 + 6x^2 - 4x - 8 - 12x^2 - x
= 8x + 8 - 4x - 8
= 4x
Vậy biểu thức đã được rút gọn thành 4x.
b) Để rút gọn biểu thức (x-2)(x+2)(x+3)-(x+1)(x^2-x+1), ta thực hiện các bước sau:
(x-2)(x+2) = x^2 - 2^2 = x^2 - 4
Thay vào biểu thức ban đầu, ta có:
(x-2)(x+2)(x+3)-(x+1)(x^2-x+1)
= (x^2 - 4)(x+3) - (x+1)(x^2-x+1)
= x^3 + 3x^2 - 4x - 12 - (x^3 + x^2 - x + x^2 - x + 1)
= x^3 + 3x^2 - 4x - 12 - x^3 - x^2 + x - x^2 + x - 1
= x^3 - x^3 + 3x^2 - x^2 - x^2 + 3x - 4x + x - 12 - 1
= 2x^2 - x - 13
Vậy biểu thức đã được rút gọn thành 2x^2 - x - 13.
a)
f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).
Hàm số đạt cực đại tại x = 0 và f C Đ = 5
Mặt khác, ta có f(-4) = f(4) = 3
Vậy
d) f(x) = | x 2 − 3x + 2| trên đoạn [-10; 10]
Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x 2 – 3x + 2.
Ta có:
g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2
Bảng biến thiên:
Vì
nên ta có đồ thị f(x) như sau:
Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132
e)
f′(x) < 0 nên và f’(x) > 0 trên (π/2; 5π/6] nên hàm số đạt cực tiểu tại x = π/2 và f C T = f(π/2) = 1
Mặt khác, f(π/3) = 2√3, f(5π/6) = 2
Vậy min f(x) = 1; max f(x) = 2
g) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]
f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)
f′(x) = 0
⇔
Ta có: f(0) = 0,
Từ đó ta có: min f(x) = −2 ; max f(x) = 3√3/2
\(\frac{1}{x-2}-\frac{1}{x+2}+\frac{4x-x^2}{4-x^2}\)
\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{4x-x^2}{\left(2-x\right)\left(x+2\right)}\)
\(=\frac{x+2-x+2-4x+x^2}{\left(x+2\right)\left(x-2\right)}=\frac{-4x+4+x^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}=\frac{x-2}{x+2}\)
\(\frac{1}{x-2}-\frac{1}{x+2}+\frac{4x-x^2}{4-x^2}\)
\(=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2-4x}{x^2-4}\)
\(=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2-4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2-4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+2-x+2+x^2-4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)