K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

a) x + 2x2 - 3x3 + 4x4 - 5 < 2x2 - 3x3 + 4x4 - 6

⇔ x < 2x2 - 3x3 + 4x4 - 6 - 2x2 + 3x3 - 4x4 + 5 (chuyển vế - đổi dấu)

⇔ x < -1 (*)

Vì -2 < -1 nên -2 là nghiệm của bất phương trình

Vậy x = -2 là nghiệm của bất phương trình.

b) (-0,001)x > 0,003

⇔ x < -3 (chia cả hai vế cho -0,001)

Vì -2 > -3 nên -2 không phải nghiệm của bất phương trình

Vậy x = -2 không là nghiệm của bất phương trình.

Câu 7. Sắp xếp các hạng tử của đa thứcdần của biến. P(x) = 10 - 4x4 + 3x3 - 2x2 + x theo lũy thừa giảm A. P(x) = 10 + x - 2x2 + 3x3 - 4x4 .                      B.C. P(x) = -4x4 - 2x2 + 3x3 + x +10 .                    D. P(x) = -4x4 + 3x3 - 2x2 + x +10 .P(x) = 3x3 + x +10 - 2x2 - 4x4 . Câu 8. Sắp xếp các hạng tử của đa thứctăng dần của biến. P(x)...
Đọc tiếp

Câu 7. Sắp xếp các hạng tử của đa thức

dần của biến.

 

P(x) = 10 - 4x4 + 3x3 - 2x2 + x

 

theo lũy thừa giảm

 

A. P(x) = 10 + x - 2x2 + 3x3 - 4x4 .                      B.

C. P(x) = -4x4 - 2x2 + 3x3 + x +10 .                    D.

 

P(x) = -4x4 + 3x3 - 2x2 + x +10 .

P(x) = 3x3 + x +10 - 2x2 - 4x4 .

 

Câu 8. Sắp xếp các hạng tử của đa thức

tăng dần của biến.

 

P(x) = 3x2 -10 + 2x3 + 4x + x4

 

theo lũy thừa

 

A. P(x) = -10 + x4 + 2x3 + 3x2 .                            B.

C. P(x) = -10 + 4x + 3x2 + 2x3 + x4 .                    D.

 

P(x) = x4 + 2x3 + 3x2 + 4x -10 .

P(x) = x4 + 3x2 + 2x3 + 4x -10 .

 

Câu 9. Bậc của đơn thức 3y2 (2y2 )3 y là

A. 6 .                                B. 7 .                                 C. 8 .                                 D. 9 .

 

Câu 10. Hệ số cao nhất của

 

P(x) = x4 + 3x2 + 2x3 + 4x -10 là

 

A. 1 .                                 B. 3 .                                 C. 4 .                                 D.

 

-10 .

 

Câu 11. Thu gọn đa thức x3 - 5y2 + x + x3 - y2 - x ta được

 

A.  x6  - 6y4 .                    B.

 

x6  - 4y4 .                    C.

 

2x3  - 6y2 .                   D. 2x3 - 4y2 .

 

2
7 tháng 5 2022

Câu 7. Sắp xếp các hạng tử của đa thức

giảm dần của biến.

 

P(x) = 10 - 4x4 + 3x3 - 2x2 + x

 

theo lũy thừa giảm

 

A. P(x) = 10 + x - 2x2 + 3x3 - 4x4 .                      B.

C. P(x) = -4x4 - 2x2 + 3x3 + x +10 .                    D.

 

P(x) = -4x4 + 3x3 - 2x2 + x +10 .

P(x) = 3x3 + x +10 - 2x2 - 4x4 .

 

Câu 8. Sắp xếp các hạng tử của đa thức

tăng dần của biến.

 

P(x) = 3x2 -10 + 2x3 + 4x + x4

 

theo lũy thừa

 

A. P(x) = -10 + x4 + 2x3 + 3x2 .                            B.

C. P(x) = -10 + 4x + 3x2 + 2x3 + x4 .                    D.

 

P(x) = x4 + 2x3 + 3x2 + 4x -10 .

P(x) = x4 + 3x2 + 2x3 + 4x -10 .

 

Câu 9. Bậc của đơn thức 3y2 (2y2 )3 y là

A. 6 .                                B. 7 .                                 C. 8 .                                 D. 9 .

 

 

 

7 tháng 5 2022

Câu 10. Hệ số cao nhất của

 

P(x) = x4 + 3x2 + 2x3 + 4x -10 là

 

A. 1 .                                 B. 3 .                                 C. 4 .                                 D.

 

-10 .

 

Câu 11. Thu gọn đa thức x3 - 5y2 + x + x3 - y2 - x ta được

 

A.  x6  - 6y4 .                    B.

 

x6  - 4y4 .                    C.

 

2x3  - 6y2 .                   D. 2x3 - 4y2 .

 

3 tháng 4 2023

a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4+x^4+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(4x^4+x^4-x^4\right)+\left(5x^3-4x^3\right)+\left(3x^2-2x^2\right)+1\)

\(f\left(x\right)=1+x^2+x^3+4x^4+2x^6\)

Hệ số cao nhất là 4, đa thức có bậc là 6, hệ số tự do là 1

b) Khi \(f\left(-1\right)\) thì đa thức trở thành:

\(f\left(-1\right)=2.\left(-1\right)^6+4.\left(-1\right)^4+\left(-1\right)^3+\left(-1\right)^2+1\)

\(f\left(-1\right)=2+4+-1+1+1\)

\(f\left(-1\right)=7\)

c) Vì \(2x^6+4x^4+x^3+x^2+1\ge0\) nên đa thức \(f\left(x\right)\) không có nghiệm

23 tháng 10 2016

Giả sử f(x) có nghiệm nguyên là a, Khi đó f(x)=(x−a)Q(x)
Thay x =1;2 vào biểu thức trên ta được : f(1)=(1−a)Q(1) và f(2)=(2−a)Q(2)

=> f(1).f(2)=(a−1)(a−2)Q(1).Q(2)

Hay 2013=(a−1)(a−2).Q(1)Q(2)

Ta có VT không chia hết cho 2, VP chia hết cho 2 ( vì (a−1)(a−2) chia hết cho 2 )

=> PT vô nghiệm

=> f(x) không có nghiệm nguyên 

18 tháng 4 2019

P(x)=3x^4+2x^2+2

Ta có 3x^4 >=0 , 2x^2 >=0 =. P(x)>0 

Vậy P(x) vô nghiêm

Học tốt

18 tháng 4 2019

Ta có: P(x) = 4x3 + 3x4 - 2x2 - x3 + 4x2 - 3x3 + 2

P(x) = (4x3 - x3 - 3x3) + 3x4 - (2x2 - 4x2) + 2

P(x) = 3x4 + 2x2 + 2 \(\ge\)2 > 0

(vì 3x4 \(\ge\)0; 2x2 \(\ge\)0; 2 > 0)

=> Đa thức P(x) ko có nghiệm

Bài 1:a) Tìm x, biết: 3.(x - 1) -  (x + 1) = - 1b) Tìm nghiệm của đa thức: f(x) = 2x2 - x Bài 2:Cho đa thức f(x) = 2x2 - 3x + x + 1   ;     g(x) = 3x - 3x3 + 2x2 - 2       ;                                            h(x) = 2x2 + 1a) Tính g(x) - f(x) + h(x)b)Tính f(- 1) - h(1/2)c) Với giá trị nào của x thì f(x) = h(x) Bài 3:Cho tam giác ABC vuông tại A, đường cao AH. Gọi AD là tia phân giác của góc HAC, M...
Đọc tiếp

Bài 1:

a) Tìm x, biết: 3.(x - 1) -  (x + 1) = - 1

b) Tìm nghiệm của đa thức: f(x) = 2x- x

 

Bài 2:

Cho đa thức f(x) = 2x2 - 3x + x + 1   ;     g(x) = 3x - 3x3 + 2x2 - 2       ;

                                            h(x) = 2x2 + 1

a) Tính g(x) - f(x) + h(x)

b)Tính f(- 1) - h(1/2)

c) Với giá trị nào của x thì f(x) = h(x)

 

Bài 3:

Cho tam giác ABC vuông tại A, đường cao AH. Gọi AD là tia phân giác của góc HAC, M là trung điểm của AD. Trên nửa mặt phẳng bờ AC chứa điểm B vẽ tia Ax song song với BC. Trên Ax lấy điểm E sao cho AE = DC

a) Chứng minh tam giác ADC = tam giác DAE

b) Chứng minh tam giác ABD là tam giác cân

c) Gọi I là giao điểm của DE và AH ; K là giao điểm của DE và AB. Chứng minh 3 điểm B, I, M thẳng hàng ?

ĐANG CẦN GẤP ! MONG MỌI NGƯỜI GIÚP ĐỠ ! CẢM ƠN RẤT NHIỀU !

       

 

 

 

0
12 tháng 10 2024

Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo bài tương tự tại đây nhé.

7 tháng 5 2021

Ta có P(x) = x3 + 2x2 - 3x + 1

                 = 3x + 4x - 3x +1

                 =       4x + 1

Cho 4x + 1 =0

       4x       = -1

         x       =  -1/4 = -0,25

Vậy P(x )= x3 + 2x2 - 3x + 1 có duy nhất một nghiệm nguyên là -0,25

DD
19 tháng 6 2021

Giả sử \(f\left(x\right)\)có nghiệm nguyên là \(a\).

Khi đó \(f\left(x\right)=\left(x-a\right)g\left(x\right)\)(với \(g\left(x\right)\)là đa thức với các hệ số nguyên) 

\(f\left(1\right)=\left(1-a\right)g\left(1\right)\)là số lẻ nên \(1-a\)là số lẻ suy ra \(a\)chẵn. 

\(f\left(2\right)=\left(2-a\right)g\left(2\right)\)là số lẻ nên \(2-a\)là số lẻ suy ra \(a\)lẻ. 

Mâu thuẫn. 

Do đó \(f\left(x\right)\)không có nghiệm nguyên.