cho a,b,c là độ dâì 3 cạnh tam giác. cm
a(b-c)^2+b(c-a)^2+c(a+b)^2>a^3+b^3+c^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{a^2}{b+c-a}+\frac{b^2}{a+c-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+a+c-b+a+b-c}\) (BĐT svacxơ)
=>A\(\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\) (ĐPCM)
^_^
Ta thấy trong tam giác tổng độ dài hai cạnh luôn lớn hơn cạnh còn lại
Ta có: \(a+b>c\)
\(\Rightarrow\left(a+b\right)^2>c^2\)
\(\Rightarrow c\left(a+b\right)^2>c^3\)
Tương tự:
\(a\left(b+c\right)^2>a^3\)
\(b\left(a+c\right)^2>b^3\)
do đó \(a\left(b+c\right)^2+b\left(a+c\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\left(ĐPCM\right)\)
Ta có:
\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2-a^3-b^3-c^3\)
\(=\left[a\left(b-c\right)^2-a^3\right]+\left[b\left(c-a\right)^2-b^3\right]+\left[c\left(a+b\right)^2-c^3\right]\)
\(=a\left[\left(b-c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a+b\right)^2-c^2\right]\)
\(=a\left(b-c-a\right)\left(b-c+a\right)+b\left(c-a-b\right)\left(c-a+b\right)+c\left(a+b-c\right)\left(a+b+c\right)\)
\(=a\left(b-c-a\right)\left(b-c+a\right)-b\left(c-a-b\right)\left(a+b-c\right)+c\left(a+b-c\right)\left(a+b+c\right)\)
\(=\left(a+b-c\right)\left[a\left(b-c-a\right)-b\left(c-a+b\right)+c\left(a+b+c\right)\right]\)
\(=\left(a+b-c\right)\left(ab-ac-a^2-bc+ab-b^2+ca+cb+c^2\right)\)
\(=\left(a+b-c\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left(a+b-c\right)\left[c^2-\left(a^2-2ab+b^2\right)\right]\)
\(=\left(a+b-c\right)\left[c^2-\left(a-b\right)^2\right]\)
\(=\left(a+b-c\right)\left(c-a+b\right)\left(c+a-b\right)\)
vì a, b, c là cạnh của 1 tam giác
\(\Rightarrow\hept{\begin{cases}a+b-c>0\\c-a+b>0\\c+a-b>0\end{cases}}\)
\(\Rightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2-a^3-b^3-c^3>0\)
\(\Rightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\)\(\left(đpcm\right)\)
a/ Ta có:
\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\left(1\right)\)
Tương tự ta có:
\(\hept{\begin{cases}\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\le a\left(2\right)\\\sqrt{\left(b+c-a\right)\left(c+a-b\right)}\le c\left(3\right)\end{cases}}\)
Lấy (1), (2), (3) nhân vế theo vế ta được
\(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)
Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé
bài 1 :
Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2
--> a + b + c = 2
Trong 1 tam giác thì ta có:
a < b + c
--> a + a < a + b + c
--> 2a < 2
--> a < 1
Tương tự ta có : b < 1, c < 1
Suy ra: (1 - a)(1 - b)(1 - c) > 0
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < -1 + ab + bc + ca
⇔ 2abc < -2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2
⇔ a² + b² + c² + 2abc < 2
--> đpcm
a)Áp dụng bđt cô si Ta có : \(x+y\ge2\sqrt{xy}\)
\(y+z\ge2\sqrt{yz}\)
\(x+z\ge2\sqrt{xz}\)
Nên : \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}=8\sqrt{xy.yz.xz}=8\sqrt{x^2y^2z^2}=8xyz\)
chào nha