K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2020

Phân tích đa thức thành nhân tử ?

x2 - xy + x - y

= x(x - y) + (x - y)

= (x - y)(x + 1)

13 tháng 12 2020

Bài làm 

\(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x+1\right)\left(x-y\right)\)

học tốt

g: (x+3y)(x-3y+2)

=(x+3y)(x-3y)+2(x+3y)

=x^2-9y^2+2x+6y

h: (x+2y)(x-2y+3)

=(x+2y)(x-2y)+3(x+2y)

=x^2-4y^2+3x+6y

i: (x^2-xy+y^2)(x+y)

=x^3+x^2y-x^2y-xy^2+xy^2+y^3

=x^3+y^3

j: (x+y)(x^2-xy+y^2)=x^3+y^3

k: (5x-2y)(x^2-xy-1)

=5x*x^2-5x*xy-5x-2y*x^2+2y*xy+2y

=5x^3-5x^2y-5x-2x^2y+2xy^2+2y

=5x^3-7x^2y+2xy^2-5x+2y

l: (x^2y^2-xy+y)(x-y)

=x^3y^2-x^2y^3-x^2y^2+xy^2+xy-y^2

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

\(\begin{array}{l}T + H = 3{x^2}y - 2x{y^2} + xy + \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy - 2{x^2}y + 3x{y^2} + 1\\ = \left( {3{x^2}y - 2{x^2}y} \right) + \left( { - 2x{y^2} + 3x{y^2}} \right) + xy + 1\\ = {x^2}y + x{y^2} + xy + 1\\T - H = 3{x^2}y - 2x{y^2} + xy - \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy + 2{x^2}y - 3x{y^2} - 1\\ = \left( {3{x^2}y + 2{x^2}y} \right) + \left( { - 2x{y^2} - 3x{y^2}} \right) + xy - 1\\ = 5{x^2}y - 5x{y^2} + xy - 1\end{array}\)

Chọn B.

14 tháng 10 2021

\(A,VT=x^3+y^3+x^3-y^3=2x^3=VP\\ B,VT=\left(x-y\right)\left(x^2+xy+y^2\right)=\left(x-y\right)\left(x^2+2xy+y^2-xy\right)\\ =\left(x-y\right)\left[\left(x+y\right)^2-xy\right]=VP\)

Sửa câu b \(cm:x^3-y^3=\left(x-y\right)\left[\left(x+y\right)^2-xy\right]\)

11 tháng 3 2020

\(a,ĐKXĐ:x\ne-;y\ne0\)

\(P=\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)

\(P=\frac{2}{x}-\left(\frac{x^2}{x\left(x+y\right)}+\frac{y^2-x^2}{xy}-\frac{y^2}{y\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)

\(P=\frac{2}{x}-\left(\frac{x^2y}{xy\left(x+y\right)}+\frac{\left(x+y\right)\left(y^2-x^2\right)}{xy\left(x+y\right)}-\frac{xy^2}{xy\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)

\(P=\frac{2}{x}-\left(\frac{x^2y+xy^2-x^3+y^3-x^2y-xy^2}{xy\left(x+y\right)}\right)\cdot\frac{x+y}{x^2+xy+y^2}\)

\(P=\frac{2}{x}+\frac{x^3-y^3}{xy\left(x+y\right)}\cdot\frac{x+y}{x^2+xy+y^2}\)

\(P=\frac{2}{x}-\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy}\cdot\frac{1}{x^2+xy+y^2}\)

\(P=\frac{2}{x}-\frac{x-y}{xy}=\frac{2y-x+y}{xy}=\frac{3y-x}{xy}\)

\(b,x^2+y^2+10=2\left(x-3y\right)\)

\(\Leftrightarrow x^2+y^2+10=2x-6y\)

\(\Leftrightarrow x^2-2x+1+y^2+6y+9=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

thay vào P được : \(P=\frac{3\left(-3\right)-1}{-3\cdot1}=\frac{-10}{-3}=\frac{10}{3}\)

10 tháng 3 2020

a, Rút gọn A

b,Tìm giá trị P, biết x,y thỏa mãn đẳng thức

x^2+y^2+10=2(x-3y)

Ta có: \(\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}-2+\dfrac{y}{y-x}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{2\left(x^3-y^3\right)-y\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\dfrac{2x^3+x^2y-xy^2-2x^3+2y^3-x^2y-xy^2-y^3}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}-\dfrac{y^3-2xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{y^2\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\cdot\dfrac{x}{x-y}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x^2-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^3-xy^2+xy^2-x^3-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

7 tháng 7 2021

(x-y)*(x^2+xy+y^2)-(x+y)*(x^2-xy+y^2)

= (x3 - y3) - (x3 + y3)

=x3 - y3 - x3 - y3

=-2y3

28 tháng 2 2020

Với đk trên ta có:

P = \(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\left(\frac{x}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}-\frac{y}{x+y}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\left(\frac{x-y}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\frac{x-y}{xy}.\left(xy-\left(x+y\right)^2\right).\frac{1}{x^2+xy+y^2}\)

\(=\frac{2}{x}+\frac{x-y}{xy}\)

\(=\frac{x+y}{xy}\)

22 tháng 9 2019
https://i.imgur.com/qYKcsE4.jpg