K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2020

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\Rightarrow\hept{\begin{cases}a=2018k\\b=2019k\\c=2020k\end{cases}}\)

Khi đó 4(a - b)(b - c) = 4(2018k - 2019k)(2019k - 2020k)

= 4(-k).(-k) 

= 4k2 (1)

Lại có (c - a)2 = (2020k - 2018k)2 = (2k)2 = 4k2 (2)

Từ (1)(2) => 4(a - b)(b - c) = (c - a)2

15 tháng 6 2019

Đặt a/2018 = b/2019 = c/2020 

=> a = 2018k ; b = 2019k ; c = 2020k

Khi đó, ta có :

(2018k - 2020k)2 = 4k2 (1)

4.(2018k - 2019k)(2019k - 2020k) = 4.(-k).(-k) = 4k2 (2)

Từ (1) và (2) => đpcm

16 tháng 6 2019

Mình làm cách lớp 7 kiểu khác nhé:

Áp dụng tính chất của dãy tỉ số bằng nhau : 

\(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=\frac{a-c}{2018-2020}=\frac{a-b}{2018-2019}=\frac{b-c}{2019-2020}\)

\(\Rightarrow\frac{a-c}{-2}=\frac{a-b}{-1}=\frac{b-c}{-1}\Leftrightarrow a-c=2\left(a-b\right)=2\left(b-c\right)\&a-b=b-c\)

\(\Leftrightarrow\left(a-c\right)^2=2\left(a-b\right).2\left(b-c\right)=4\left(a-b\right)\left(b-c\right)\left(đpcm\right).\)

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=2018k\\b=2019k\\c=2020k\end{matrix}\right.\)

\(\Rightarrow\left(a-c\right)^3=\left(2018k-2020k\right)^3=\left(-2k\right)^3=-8k^3\) (1)

\(8\left(a-b\right)^2.\left(b-c\right)=8\left(2018k-2019k\right)^2.\left(2019k-2020k\right)=8k^2\left(-k\right)=8\left(-k\right)^3=-8k^3\left(2\right)\)

Từ (1) và (2) ⇒ \(\left(a-c\right)^3=8\left(a-b\right)^2.\left(b-c\right)\left(đpcm\right)\)

30 tháng 1 2020

mn giúp mk vs

chiều mk nộp rùikhocroikhocroikhocroikhocroi

5 tháng 2 2020

Ta có: \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=\frac{a-b}{2018-2019}=\frac{b-c}{2019-2020}=\frac{a-c}{2018-2020}.\)

17 tháng 2 2020

a) Ta có : \(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)

                 \(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)

Vì 0<a<b nên ab+ac<ab+bc

\(\Rightarrow\frac{ab+ac}{b\left(b+c\right)}>\frac{ab+bc}{b\left(b+c\right)}\)

hay \(\frac{a}{b}< \frac{a+c}{b+c}\)

Vậy \(\frac{a}{b}< \frac{a+c}{b+c}\)

Ta có :

\(\frac{a+b-b-c}{2018-2019}=\frac{a-c}{-1}\)

\(\frac{b+c-c-a}{2019-2020}=\frac{b-a}{-1}\)

\(\frac{b-c}{2018-2020}=\frac{b-c}{-2}\)     

Đặt \(\frac{a-c}{-1}=\frac{b-a}{-1}=\frac{b-c}{-2}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}\frac{a-c}{-1}=k\\\frac{b-a}{-1}=k\\\frac{b-c}{-2}=k\end{cases}\Rightarrow\hept{\begin{cases}a-c=-k\\b-a=-k\\b-c=k.\left(-2\right)\end{cases}}}\)

\(\Rightarrowđpcm\)

30 tháng 10 2019

Đề bài có bị sai không bạn? Đặng Quốc Huy

30 tháng 10 2019

Ko đề đúng đấy màVũ Minh Tuấn

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Lời giải:

Đặt \(\frac{a}{2016}=\frac{b}{2018}=\frac{c}{2020}=t\Rightarrow a=2016t; b=2018t; c=2020t\)

Khi đó:

\(\frac{(a-c)^2}{4}=\frac{(2016t-2020t)^2}{4}=\frac{16t^2}{4}=4t^2(1)\)

\((a-b)(b-c)=(2016t-2018t)(2018t-2020t)=(-2t)(-2t)=4t^2(2)\)

Từ \((1);(2)\Rightarrow \frac{(a-c)^2}{4}=(a-b)(b-c)\) (đpcm)

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Đặng Quốc Huy:

\(\frac{(2016t-2020t)^2}{4}=\frac{(-4t)^2}{4}=\frac{(-4)^2.t^2}{4}=\frac{16t^2}{4}=4t^2\)