Bài 1 :Tính
\(\frac{x+4}{x^2-4}-\frac{2}{x^2+2x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{x^2-1}\)
= \(-\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{2}{\left(x-1\right)\left(x+1\right)}\)
= \(\frac{-x-1+x-1+2}{\left(x-1\right)\left(x+1\right)}=0\)
c) \(\left(\frac{x^2-16}{x^2+8x+16}+\frac{6}{x+4}\right)\cdot\frac{2x}{x+2}\)
= \(\left(\frac{x^2-16}{\left(x+4\right)^2}+\frac{6\left(x+4\right)}{\left(x+4\right)^2}\right)\cdot\frac{2x}{x+2}\)
= \(\left(\frac{x^2-16+6x+24}{\left(x+4\right)^2}\right)\cdot\frac{2x}{x+2}\)
= \(\frac{x^2+6x+8}{\left(x+4\right)^2}\cdot\frac{2x}{x-2}\)
= \(\frac{x^2+4x+2x+8}{\left(x+4\right)^2}\cdot\frac{2x}{x+2}\)
= \(\frac{\left(x+4\right)\left(x+2\right)}{\left(x+4\right)^2}\cdot\frac{2x}{x+2}=\frac{2x}{x+4}\)
\(\frac{x^2-36}{2x+10}\cdot\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2x+10}\cdot\frac{3}{6-x}=-\frac{3\left(x+6\right)}{2x+10}=-\frac{3x+18}{2x+10}\)
\(\frac{x^2-4}{x^2-9}\cdot\frac{3x+9}{x+2}=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{3\left(x+3\right)}{x+2}=\frac{3\left(x-2\right)}{x-3}\)
\(\frac{x^3-8}{5x+20}\cdot\frac{x^2+4x}{x^2+2x+4}=\frac{\left(x-2\right)\left(x^2+2x+4\right)}{5\left(x+4\right)}\cdot\frac{x\left(x+4\right)}{x^2+2x+4}=\frac{x\left(x-2\right)}{5}\)
\(\frac{4x+12}{\left(x+4\right)^2}:\frac{3x+9}{x+4}=\frac{4\left(x+3\right)}{\left(x+4\right)^2}\cdot\frac{x+4}{3\left(x+3\right)}=\frac{4}{3\left(x+4\right)}\)
Bài 1.
a)\(\frac{4x-4}{x^2-4x+4}\div\frac{x^2-1}{\left(2-x\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\div\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\times\frac{\left(x-2\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)
b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}=\frac{2x+1}{x\left(2x-1\right)}+\frac{-32x^2}{4x^2-1}+\frac{1-2x}{x\left(2x+1\right)}\)
\(=\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{\left(1-2x\right)\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{4x^2+4x+1}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{4x^2+4x+1-32x^3-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-32x^3+8x}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{-8x\left(4x^2-1\right)}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-8x\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}=-8\)
c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x}{x^2-1}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{x-1+x+1+2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)
\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{4x}=\frac{1}{x+1}\)
Bài 3.
N = ( 4x + 3 )2 - 2x( x + 6 ) - 5( x - 2 )( x + 2 )
= 16x2 + 24x + 9 - 2x2 - 12x - 5( x2 - 4 )
= 14x2 + 12x + 9 - 5x2 + 20
= 9x2 + 12x + 29
= 9( x2 + 4/3x + 4/9 ) + 25
= 9( x + 2/3 )2 + 25 ≥ 25 > 0 ∀ x
=> đpcm
Answer:
a) \(Q=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{4-2x}{x^3-x^2+x}\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right).\frac{x\left(x^2-x+1\right)}{4-2x}\)
\(=\frac{x+1+x+1-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x\left(x^2-x+1\right)}{2\left(2-x\right)}\)
\(=\frac{\left(-2x^2+4x\right)-x}{\left(x+1\right)-2\left(2-x\right)}\)
\(=\frac{+2x^2\left(-x+2\right)}{\left(x+1\right)-2\left(2-x\right)}\)
\(=\frac{x^2}{x+1}\)
b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=\frac{-5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}Q=\frac{4}{3}\\Q=\frac{1}{2}\end{cases}}\)
Bài làm
a) \(Q=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{4-2x}{x^3-x^2+x}\)
\(Q=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)}{\left(x^2-x+1\right)\left(x+1\right)}-\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right):\frac{4-2x}{x^3-x^2+x}\)
(bước trên là mình đổi dấu ở phân số thứ hai, dấu âm chuyển xuống dưới mẫu nên đổi dấu ở mẫu, sau đó nhân với cả cụm x + 1 nha, tại hơi tắt nên thêm dòng giải thích cho dễ hiểu)
\(Q=\left(\frac{x+1}{x^3+1}+\frac{x+1}{x^3+1}-\frac{2x^2-2x+2}{x^3+1}\right):\frac{4-2x}{x^3-x^2+x}\)
\(Q=\frac{-2x^2+4x}{x^3+1}\cdot\frac{x\left(x^2-x+1\right)}{4-2x}\)
\(Q=\frac{x\left(4-2x\right)}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\frac{x\left(x^2-x+1\right)}{4-2x}\)
\(Q=\frac{x^2}{x+1}\)
b) Ta có: \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)
=> \(x-\frac{3}{4}=\pm\frac{5}{4}\)
=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}}\)
*Trường hợp 1: Khi x = 2
Thay x = 2 vào \(Q=\frac{x^2}{x+1}\)ta được:
\(Q=\frac{2^2}{2+1}=\frac{4}{3}\)
Vậy khi x = 2 thì Q = 4/3
*Trường hợp 2: Khi x = -1/2
Thay x = -1/2 vào \(Q=\frac{x^2}{x+1}\)ta được:
\(Q=\frac{\left(-\frac{1}{2}\right)^2}{-\frac{1}{2}+1}=\frac{\frac{1}{4}}{\frac{1}{2}}=\frac{1}{4}:\frac{1}{2}=\frac{1}{4}\cdot2=\frac{1}{2}\)
Vậy x = -1/2 thì Q = 1/2
ĐKXĐ : \(\hept{\begin{cases}x-2\ne0\\3-4x\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\x\ne\frac{3}{4}\end{cases}}}\)
\(\frac{5}{x-2}+\frac{6}{3-4x}=0\)
\(\frac{5\left(3-4x\right)}{\left(x-2\right)\left(3-4x\right)}+\frac{6\left(x-2\right)}{\left(3-4x\right)\left(x-2\right)}=0\)
\(15-20x+6x-12=0\)
\(3-14x=0\Leftrightarrow14x=3\Leftrightarrow x=\frac{3}{14}\)theo ĐKXĐ : x thỏa mãn
17) \(ĐKXĐ:x\ne1\)
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(\Leftrightarrow\frac{x^2+x+1-3x^2-2x^2+2x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow-4x^2+3x+1=0\)
\(\Leftrightarrow-\left(x-1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\4x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-\frac{1}{4}\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{1}{4}\right\}\)
18) \(ĐKXĐ:x\ne1\)
\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\Leftrightarrow\frac{x^2+x+1+2x^2-5-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow3x^2-3x=0\)
\(\Leftrightarrow3x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=1\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)
19) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\\x\ne\frac{1}{2}\end{cases}}\)
\(\frac{x+4}{2x^3-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
\(\Leftrightarrow\frac{x+4}{\left(2x-1\right)\left(x-2\right)}+\frac{x+1}{\left(2x-1\right)\left(x-3\right)}-\frac{2x+5}{\left(2x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-12+x^2-x-2-2x^2-x+10}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow-x-4=0\)
\(\Leftrightarrow x=-4\)(TM)
Vậy tập nghiệm của phương trình là \(S=\left\{-4\right\}\)
20) \(ĐKXĐ:x\ne0\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}-\frac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)\left(x^2-x+1\right)-x\left(x-1\right)\left(x^2+x+1\right)-3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)
\(\Leftrightarrow x^4+x-x^4+x-3=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\frac{3}{2}\)(TM)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{2}\right\}\)
c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)
d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)
e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=0\)
a) \(\frac{3x+5}{2\left(x-1\right)}+\frac{4}{x-2}=\frac{\left(3x+5\right)\left(x-2\right)+4\cdot2\left(x-1\right)}{2\left(x-1\right)\left(x-2\right)}=\frac{3x^2-6x+5x-10+8x-8}{2\left(x-1\right)\left(x-2\right)}\)
\(=\frac{3x^2+7x-18}{2\left(x-1\right)\left(x-2\right)}\)
b) \(\frac{2x^2+1}{4x^2-2x}+\frac{3-3x}{1-2x}+\frac{3}{2x}=\frac{2x^2+1+4x\left(3-3x\right)+2\cdot3\left(1-2x\right)}{4x\left(1-2x\right)}=\frac{2x^2+1+12-12x+6-12x}{4x\left(1-2x\right)}\)\(=\frac{2x^2-24x+19}{4x\left(1-2x\right)}\)
Đề này... bạn xem lại đi. Chứ thế này thì dùng máy tính cũng không làm nổi T-T
\(\frac{x+4}{x^2-4}-\frac{2}{x^2+2x}\)
\(=\frac{x+4}{\left(x-2\right)\left(x+2\right)}-\frac{2}{x\left(x+2\right)}\)
\(=\frac{\left(x+4\right).x}{x\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+4x-2x-4}{x\left(x-2\right)\left(x+2\right)}=\frac{x^2+2x-4}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2-2^2+2x}{x\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)\left(x-2\right)+2x}{x\left(x-2\right)\left(x+2\right)}=\frac{2x}{x}\)
\(\frac{x+4}{x^2-4}-\frac{2}{x^2+2x}ĐK:x\ne\pm2;0\)
\(=\frac{x+4}{\left(x-2\right)\left(x+2\right)}-\frac{2}{x\left(x+2\right)}=\frac{x\left(x+4\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+4x-2x+4}{x\left(x-2\right)\left(x+2\right)}=\frac{x^2-2x+4}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x\left(x+2\right)}\)