Cho \(a,b,c\inℤ\). Chứng minh rằng: Nếu a < b và b < c thì a < c. (Tính chất băc cầu của thứ tự)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có a<b (1) và b<c (2)
Cộng vế theo vế của (1) và (2) ta được : a+b<b+c
=> a<c ( trừ 2 vế với b)
Vì x < y (a/m < b/m) và m > 0 nên a < b .
x = a / m = 2a / 2m ; y = b / m = 2b / 2m ; z = a + b / 2m
a < b => a + a < a + b < b + b <=> 2a < a + b < 2b => 2a / 2m < a + b / 2m < 2b / 2m => x < z < y
ta có x=a/m = 2a/2m ; y= b/m= 2b/2m ; z= (a+b)/2m
lại có x<y <=> a<b (do m>0)
<=> a+a < a+b < b + b
<=> 2a < a+b < 2b
<=> 2a/2m <(a+b)/2m <2b/2m
<=> x<z<y
x =a/m =>. x = 2a/2m
y =b/m => y = 2b/2m
z = (a+b)/2m
theo giả thiết a < b => a + b < b + b => a + b < 2b ........(1)
Ngòa i ra, a < b => a + a < a + b => 2a < a + b ........(2)
Suy ra:
2a < a +b < 2b
Suy ra (chia 2 vế cho 2m) :
2a/2m < (a +b)/2m < 2b
R út gọn ta được : x < z <y