Một vật được ném ngang từ độ cao 75m. Sau khi chuyển động được 2 giây, vectơ vận tốc của vật hợp với phương ngang một góc 45°.
a) Tính vận tốc đầu của vật.
b) Thời gian chuyển động của vật.
c) Tầm bay xa của vật. Lấy g = 10 m / s 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vận tốc ban đầu của vật vo = vx.
Tại thời điểm t = 2s: vy = gt = 10.2 = 20m/s.
a) Vận tốc ban đầu của vật v 0 = v x .
Tại thời điểm t = 2s: v y = gt = 10.2 = 20m/s.
Mặt khác ta biết rằng: tan α = v y v x = t g 30 0 = 3 3 ⇒ v 0 = v x = 20 3 m / s
b) Thời gian chuyển động t = 2 h g = 2 . 65 10 = 3 , 6 s .
c) Tầm bay xa: x m a x = v 0 t = 20 3 . 3 , 6 = 124 , 56 m
a) Vận tốc ban đầu của vật $v_{o}=v_{x}$
Tại thời điểm $t=3s$, vận tốc theo trục Oy là $v_{y}=g.t=10.3=30m/s$.
Mặt khác, ta biết rằng: $\tan \alpha=\frac{v_{y}}{v_{x}}=\tan 45^o=1 \rightarrow v_{o}=v_{x}=30m/s$.
b) Thời gian chuyển động $t=\sqrt{\frac{2h}{g}}=\sqrt{\frac{2.80}{10}}=4s$.
c) Tầm bay xa $L=x_{max}=v_{o}t=30.4=120m$
a)ta có v=\(\sqrt{vo^2+\left(gt\right)^2}=\sqrt{vo^2+30^2}\)
ta có cos45=\(\frac{vo}{v}\)=\(\frac{vo}{\sqrt{vo^2+30^2}}\)giải ta được vo=30m/s\(^2\)
b)thời gian áp dụng công thức t=\(\sqrt{\frac{2h}{g}}=\sqrt{\frac{2\cdot80}{10}}=4\)
c)áp dụng công thức tính tầm bay xa :vo*\(\sqrt{\frac{2h}{g}}\)=30*4=120m
Chúc bạn học tốt
a. Chọn hệ quy chiếu Oxy với O là ở mặt đất
+ Trên trục Ox ta có :
a x = 0 ; v x = v o ; x = v o t
+ Trên trục Oy ta có :
a y = - g ; v y = - g t = - 10 t
y = h − 1 2 g t 2 = 80 − 5 t 2
Khi vận tốc của vật hợp với phương thẳng đứng một góc 45 0
Ta có tan 45 0 = v x v y = v 0 10 t ⇒ v 0 = 10 t = 10.3 = 30 m / s
b. Chạm đất: y = 0 ⇒ 5 t 2 = 80 ⇒ t = 4 s
Khi đó : x max = v 0 t = 30.4 = 120 m ; v y = g t = 10.4 = 40 m / s
⇒ v = v y 2 + v x 2 = 40 2 + 30 2 = 50 m / s
- Lấy vận tốc ban đầu của vật là : \(v_o=v_x\)
- Tại thời điểm 3s từ lúc ném \(v_y=gt=10.3=30\left(\dfrac{m}{s}\right)\)
Theo bài ra vận tốc vật hợp với phương ngang góc 45o .
\(\Rightarrow Tan\alpha=Tan45=\dfrac{v_y}{v_x}=\dfrac{30}{v_x}\)
\(\Rightarrow v_x=30\left(\dfrac{m}{s}\right)\)
Vậy ....
Đáp án A.
Góc giữa véc tơ vận tốc và phương ngang là α xác định theo công thức:
a. Chọn hệ quy chiếu Oxy như hình vẽ
Thời điểm ban đầu
Chiếu lên trục ox có
x 0 = 0 ; v 0 x = v 0 c o s α = 10 2 ( m / s )
Chiếu lên trục oy có
y 0 = 0 ; v 0 y = v 0 s i n α = 10 √ 2 ( m / s )
Xét tại thời điểm t có a x = 0 ; a y = - g
Chiếu lên trục ox có
v x = 10 √ 2 ( m / s ) ; x = 10 √ 2 t
Chiếu lên trục Oy có
v y = 10 √ 2 - 10 t ; y = 45 + 10 √ 2 t - 5 t 2
⇒ y = 45 + x - x 2 40 Vậy vật có quỹ đạo là một Parabol
Khi lên đến độ cao max thì: v y = 0 ⇒ 0 = 10 √ 2 - 10 t ⇒ t = √ 2 ( s )
H m a x = y = 45 + 10 . √ 2 . √ 2 - 5 ( √ 2 ) 2 = 55 ( m )
Khi vật chạm đất thì y = 0 ⇒ 45 + 10 √ 2 t - 5 t 2 = 0 ⇒ t = 4 , 73 ( s )
Vậy sau 4,73s thì vật chạm đất
b. Tầm xa của vật L = x = 10 √ 2 . 4 , 73 ≈ 66 , 89 ( m )
Vận tốc vật khi chạm đất v = v x 2 + v y 2
Với v y = 10 √ 2 - 10 . 4 , 73 = 33 , 16 ( m / s )
⇒ v = √ ( ( 10 √ 2 ) 2 + 33 , 〖 16 〗 2 ) = 36 , 05 ( m / s )
c. Khi vật có độ cao 50 thì
y = 50 = 45 + 10 √ 2 t - 5 t 2 ⇒ t 1 = 2 , 414 ( s ) ; t 2 = 0 , 414 ( s )
Lúc t 1 = 2 , 414 ( s ) ⇒ v 1 = 10 √ 2 - 10 t 1 = 10 √ 2 - 10 . 2 , 414 ≈ - 10 ( m / s )
Lúc t 2 = 0 , 414 ( s ) ⇒ v 2 = 10 √ 2 - 10 t 2 = 10 √ 2 - 10 . 0 , 414 ≈ 10 ( m / s )
Ứng với hai trường hợp vật đi xuống đi lên