K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2016

đặt vế trái là A. Cần cm: A >= \(2\sqrt{2}\)

Ta có tử là a2 + b2 = (a-b)+2ab =(a-b)2 + 2 ( ab=1 )

Chia cho mẫu là a-b được : A = a-b + \(\frac{2}{a-b}\) >= \(2\sqrt{2}\) ( bđt Cô-si với 2 số dương a,b ) => đpcm

dùng cosi ngu quá

25 tháng 6 2017

Ta có: \(\frac{a^2+b^2}{a-b}\)\(\frac{a^2-2ab+b^2+2ab}{a-b}\)\(\frac{\left(a-b\right)^2+2ab}{a-b}\)= (a -b) + \(\frac{2ab}{a-b}\)

Vì a>b>0 nên áp dụng BĐT Cô-Si cho 2 số không âm ta có :

(a - b) +\(\frac{2ab}{a-b}\)\(\ge\)\(2\sqrt{\left(a-b\right)\cdot\frac{2ab}{a-b}}\)= 2\(\sqrt{2ab}\)\(2\sqrt{2}\)( Vì ab = 1) ( đpcm)

6 tháng 12 2015

\(VT=\frac{\left(a-b\right)^2+2ab}{a-b}=a-b+\frac{2}{a-b}\ge2\sqrt{\left(a-b\right).\frac{2}{a-b}}=2\sqrt{2}\)

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Lời giải:
Do $a>b$ nên $a-b>0$

Áp dụng BĐT AM-GM với các số dương ta có:

\(a+\frac{1}{b(a-b)^2}=\frac{a-b}{2}+\frac{a-b}{2}+b+\frac{1}{b(a-b)^2}\geq 4\sqrt[4]{\frac{a-b}{2}.\frac{a-b}{2}.b.\frac{1}{b(a-b)^2}}\)

\(=4\sqrt[4]{\frac{1}{4}}=2\sqrt{2}\) (đpcm)

Dấu "=" xảy ra khi \(\frac{a-b}{2}=b=\frac{1}{b(a-b)^2}\Leftrightarrow a=3\sqrt{\frac{1}{2}}; b=\sqrt{\frac{1}{2}}\)

13 tháng 10 2016

1)đề thiếu

2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)

\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:

\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)

Đpcm

3)\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Đpcm

13 tháng 10 2016

P OI cai nay dung bat dang thuc co si do