trong tam giác ABC có chu vi 2p=a+b+c( a,b,c là độ dài ba cạnh ). CMR: \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
dấu bằng trong BDT trên xảy ra lúc tam giác ABC có đặc điểm gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chuẩn hóa: \(a+b+c=1\)
Vì a, b, c là 3 cạnh của tam giác nên ta có: \(a,b,c\in\left(0;\frac{1}{2}\right)\)
Bài toán ban đầu trở thành:
\(P=\left(\frac{4}{1-a}-\frac{1}{a}\right)+\left(\frac{4}{1-b}-\frac{1}{b}\right)+\left(\frac{4}{1-c}-\frac{1}{c}\right)\le9\)
Ta chứng minh:
\(\frac{4}{1-x}-\frac{1}{x}\le18x-3\)
\(\Leftrightarrow\left(3x-1\right)^2\left(1-2x\right)\ge0\) (đúng)
Áp dụng bài toán ta được
\(P\le18\left(a+b+c\right)-9=9\)
Vậy ......
a,b,c là độ dài 3 cạnh 1 tam giác nên a+b>c, b+c>a,c+a>b
Ap dụng \(\frac{x}{y}< \frac{x+z}{y+z}\) với \(x< y\Rightarrow\)\(\frac{a}{b+c}< \frac{a+a}{b+c+a}=\frac{2a}{a+b+c}\)
Tương tự \(\frac{b}{c+a}< \frac{2b}{a+b+c}\)
\(\frac{c}{a+b}< \frac{2c}{a+b+c}\)
Cộng 3 bđt được đpcm
Do p là nửa chu vi tam giác nên \(2p=a+b+c\)
Ta có bổ đề sau: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
Áp dụng vào bài toán:
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-a-b}=\frac{4}{c}\)
Tương tự: \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a},\)\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)
\(\Rightarrow2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}=4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)(đpcm)
Dấu "=" xảy ra khi a=b=c.
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b\)
b/ Áp dụng BĐT ở câu a:
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-\left(a+b\right)}=\frac{4}{c}\)
Tương tự: \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\) ; \(\frac{1}{p-a}+\frac{1}{p-c}\ge\frac{4}{b}\)
Cộng vế với vế: \(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge2\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ \(2p=a+b+c=18\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=\frac{18^2}{3}=108\)
Dấu "=" xảy ra khi \(a=b=c=6\)
Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) \(\left(\text{*}\right)\) , với \(a,b>0\) (vì
Thật vậy, áp dụng bất đẳng thức Cô-si cho hai số dương \(a,b>0\), ta được:
\(a+b\ge2\sqrt{ab}\) và \(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{a}.\frac{1}{b}}=\frac{2}{\sqrt{ab}}\)
Do đó, \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\) \(\Leftrightarrow\) \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b\)
Vậy, bất đẳng thức \(\left(\text{*}\right)\) đã được chứng minh.
\(----------------------\)
Vì \(a,b,c,p\) lần lượt là độ dài ba cạnh và nửa chu vi của tam giác nên \(a,b,c,p>0\)
Áp dụng bất đẳng thức \(\left(\text{*}\right)\) với \(p-a,\) \(p-b,\) \(p-c\) là các số dương, ta có:
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{\left(p-a+p-b\right)}=\frac{4}{\left(2p-a-b\right)}=\frac{4}{c}\) \(\left(1\right)\)
\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{\left(p-b+p-c\right)}=\frac{4}{\left(2p-b-c\right)}=\frac{4}{a}\) \(\left(2\right)\)
\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{\left(p-c+p-a\right)}=\frac{4}{\left(2p-c-a\right)}=\frac{4}{b}\) \(\left(3\right)\)
Cộng \(\left(1\right);\) \(\left(2\right);\) và \(\left(3\right)\) lần lượt vế theo vế, ta được:
\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\) \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(p-a=p-b=p-c\), tức là \(a=b=c\) hay tam giác đã cho là tam giác đều (vì có 3 cạnh bằng nhau).
Do \(p=\dfrac{a+b+c}{2}\Rightarrow2p=a+b+c\)
Ta có: \(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{2p-\left(a+b\right)}=\dfrac{4}{a+b+c-\left(a+b\right)}=\dfrac{4}{c}\)
\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{2p-\left(b+c\right)}=\dfrac{4}{a}\)
\(\dfrac{1}{p-a}+\dfrac{1}{p-c}\ge\dfrac{4}{2p-\left(a+c\right)}=\dfrac{4}{b}\)
Cộng vế với vế:
\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Rightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Dấu "=" xảy ra khi \(a=b=c\) hay tam giác là tam giác đều
Ta có : \(p=\frac{a+b+c}{2}\Rightarrow2p=a+b+c\)
Do a ; b ; c là 3 cạnh tam giác \(\Rightarrow b+c-a;c+a-b;a+b-c>0\)
\(b+c-a>0\Rightarrow\frac{b+c}{2}-\frac{a}{2}>0\Rightarrow\frac{a+b+c}{2}-a>0\Rightarrow p-a>0\)
CMTT , ta có : \(p-b>0;p-c>0\)
Áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) với x ; y > 0 vào bài toán , ta có
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{a+b+c-a-b}=\frac{4}{c}\left(1\right)\)
CMTT : \(\frac{1}{p-a}+\frac{1}{p-c}\ge\frac{4}{b};\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) \(\left(đpcm\right)\)
Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c
=> p - a = (a + b + c)/2 - a
=> p - a = (b + c + a - 2a)/2
=> p - a = (b + c - a)/2
=> 2(p - a) = b + c - a (1)
Tương tự ta chứng minh được:
2(p - b) = a + c - b (2)
2(p - c) = a + b - c (3)
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b)
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ]
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ]
Bây giờ ta đã đưa bài toán về chứng minh
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Ta có: (x - y)² ≥ 0
<=> x² - 2xy + y² ≥ 0
<=> x² - 2xy + y² + 4xy ≥ 4xy
<=> x² + 2xy + y² ≥ 4xy
<=> (x + y)² ≥ 4xy
=> với x + y ≠ 0 và xy ≠ 0
=> (x + y)²/(x+ y) ≥ 4xy/(x + y)
=> (x + y) ≥ 4xy/(x + y)
=> (x + y)/xy ≥ (4xy)/[xy(x + y)]
=> 1/x + 1/y ≥ 4/(x + y) (*)
Áp dụng (*) với x = p - a và y = p - b ta được:
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4)
Chứng minh tương tự ta được:
1/(p - a) + 1/(p - c) ≥ 4/b (5)
1/(p - b) + 1/(p - c) ≥ 4/a (6)
Cộng vế với vế của (4);(5) và (6) ta được:
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c)
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c)
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) )
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Dấu bằng xảy ra <=> a = b = c.
Sai thì thôi nha !!! k mk nha
Áp dụng BĐT:1/a+1/b>=4/a+b
Ta có:
1/(p-a)+1/(p+b)>=4/(2p-a-b)=4/c
Các phần sau tương tự!
=>2VT>=4(1/a+1/b+1/c)
=>VT>=2(1/a+1/b+1/c)
b)
Dấu "=" xảy ra p-a=p-b=p-c => a=b=c
=>tg đều
kinh làm đề lê hồng phong cơ ak