Cho m,n thuộc N và p là số nguyên tố thỏa mãn: p/( m-1)=(m+n)/p
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
17 tháng 11 2015
=> p^2 = (m-1)(m+n). => m+n thuộc ước dương của p^2 . mà p là số nguyên tố => m+n thuộc p,1,p^2. mà m+n> m-1=> m+n = p^2 => m-1 =1 => m=2=> p^2 = n+2(đpcm)
NL
2
SI
1 tháng 12 2018
mời tham khảo link
https://olm.vn/hoi-dap/detail/6389684139.html
4 tháng 10 2019
Câu hỏi của Nguyễn Phương Thảo - Toán lớp 7 - Học toán với OnlineMath
I
5 tháng 3 2020
điều kiên tồn tại vt >0=> m > 1
=> \(p^2=\left(m+n\right)\left(m-1\right)\left(1\right)\)
vt là bp số nguyên tố nên vp xảy ra các TH
TH1:\(p=\left(m+n\right)=\left(m-1\right)=>n=-1\)( loại n là số tự nhiên)
Th2: một trong 2 số phải bằng 1 có m>1 => m+n>1
=> m-1=1 => m=2
=>\(p^2=\left(n+2\right)\left(2-1\right)=n+2\left(dpcm\right)\)
NQ
0
VT
0
NA
0
TN
0
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
. . . . . . . . . . . p. . . . . . .m + n
Thỏa mãn ————– = ———– <=> p² = ( m – 1 )( m + n )
. . . . . . . . . .m – 1. . . . . . .p
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p²
Chú ý : m – 1< m + n ( * )
Do p là số nguyên tố nên p² chỉ có các ước nguyên dương là 1, p và p² ( ** )
Từ ( * ) và ( ** ) ta có m – 1 = 1 và m + n = p². Khi đó m = 2 và tất nhiên 2 + n = p² .
Chúc bạn thành công trong học tập :