cmr \(\frac{12n+1}{30.n+2}\) là phân số tối giản (n thuộc N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯC ( 30n + 1 ; 15n + 2 )
=> 30n + 1 ⋮ d => 2.( 30n + 1 ) ⋮ d
=> 15n + 2 ⋮ d => 4.( 15n + 2 ) ⋮ d
=> [ 2.( 30n + 1 ) - 4.( 15n + 2 ) ] ⋮ d
=> [ ( 60n + 2 ) - ( 60n + 8 ) ] ⋮ d
=> - 6 ⋮ d => d = { - 6 ; - 1 ; 1 ; 6 }
Vì ƯC ( 30n + 1 ; 15n + 2 ) = { - 6 ; - 1 ; 1 ; 6 } nên 30n + 1 / 15n + 2 không là p/s tối giản
gọi d thuộc ƯC(12n+1,30n+2)
=>\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\Rightarrow1⋮d}\)\(⋮d\)=>d=-1;1
=>\(\frac{12n+1}{30n+2}\)là p/số tối giản
Gọi d là ƯCLN của 12n + 1 và 30n + 2
Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d
<=> 5.(12n + 1) chia hết cho d , 2(30n + 2) chia hết cho d
=> 60n + 5 chia hết cho d , 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản
Gọi d là UCLN của 12n +1/ 30n+2
=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d
=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d
=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d
=>(60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> giả sử đầu bài đúng
=> phân số 12n+1/30n+2 là phân số tối giản (n thuộc N)
Gọi d là ƯC(12n + 1 ; 30n + 2)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow}\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
=> 60n + 5 - 60n + 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(12n + 1; 30n + 2) = 1
=> \(\frac{12n+1}{30n+2}\)tối giản ( đpcm )_
Ta có \(\frac{12n+1}{30n+2}\), gọi ƯCLN của 12n + 1 và 30n + 2 là d
Suy ra
( 12n + 1 ) . 5 = 60n + 5 chia hết cho d
( 30n + 2 ) . 2 = 60n + 4 chia hết cho d
Suy ra [ ( 60n + 5 ) - ( 60n + 4 ) ] chia hết cho d
Suy ra 1 chia hết cho d
Nên d = 1
Suy ra ( 12n + 1 ) và ( 30n + 2 ) Nguyên tố cùng nhau
Suy ra\(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d là ƯCLN(12n+1;30n+2)
Ta có: \(12n+1⋮d\Rightarrow5\left(12n+1\right)=60n+5⋮d\)
\(30n+2⋮d\Rightarrow2\left(30n+2\right)=60n+4⋮d\)
\(\Rightarrow\left(60n+5\right)-60n-4⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1;-1\right\}\)
Mà \(n\in N\Rightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản ĐPCM
Giải:
Gọi d = UCLN ( 12n + 1; 30n + 2 )
Ta có:
\(12n+1⋮d\)
\(\Rightarrow5\left(12n+1\right)⋮d\)
\(\Rightarrow60n+5⋮d\)
\(30n+2⋮d\)
\(\Rightarrow2\left(30n+2\right)⋮d\)
\(\Rightarrow60n+4⋮d\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow\left(60n-60n\right)+\left(5-4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\in\left\{\pm1\right\}\)
Vì \(d\in N\) nên d = 1
Vì d = UCLN( 12n + 1; 30n + 2 )= 1 \(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản.
\(\Rightarrowđpcm\)
Hướng dẫn: Đặt (tử, mẫu)=d
Phương pháp: Tìm được d = 1.
Cách làm: Nhân tử với a, nhân mẫu với b (a, b là số nguyên) sao cho khi trừ đi 2 kết quả mới triệt tiêu được 2 biểu thức chứa n.
Cuối cùng sẽ tìm được 1 là bội của b => d=1
Còn lại cậu tự làm nhé!
a) Với n = 3 \(\Rightarrow A=\frac{12.3+1}{20.3+2}=\frac{36+1}{60+2}=\frac{37}{62}\)
Vậy với n = 3 thì \(A=\frac{37}{62}\)
b) Gọi d là ƯCLN của 12n + 1 và 20n + 2
=> 12n + 1 ⋮ d <=> 5(12n + 1) ⋮ d <=> 60n + 5 ⋮ d (1)
20n + 2 ⋮ d <=> 3(20n + 2) ⋮ d <=> 60n + 6 ⋮ d (2)
Từ (1) và (2) => (60n + 6) - (60n + 5) ⋮ d
<=> 1 ⋮ d
=> d ∈ Ư(1) Mà d là ưCLN => d = 1
=> 12n + 1 và 20n + 2 nguyên tố cùng nhau => \(\frac{12n+1}{20n+2}\) tối giản
Vậy với n ∈ N thì A tối giản
Xét\(12n+1=12n+24-23=12\left(n+2\right)-23\)
\(\Rightarrow\frac{12n+1}{2n\left(n+2\right)}=\frac{12\left(n+2\right)-23}{2n\left(n+2\right)}=\frac{12\left(n+2\right)}{2n\left(n+2\right)}-\frac{23}{2n\left(n+2\right)}=\frac{6}{n}-\frac{23}{2n\left(n+2\right)}\)
Xét\(\frac{23}{2n\left(n+2\right)}\)ta có:
\(2n\left(n+2\right)⋮2\)
=> \(2n\left(n+2\right)\)là số chẵn
mà 23 là số lẻ
\(\Rightarrow\frac{23}{2n\left(n+2\right)}\)Tối giản
\(\Rightarrow\frac{6}{n}-\frac{23}{2n\left(n+2\right)}\)tối giản
Vậy \(\frac{12n+1}{2n\left(n+2\right)}\)Tối giản (ĐPCM)
Giả sử p/s 12n+1/30n+2 ko tối giản
Đặt ƯCLN(12n+1;30n+2)=d ,nghĩa là nếu d=ƯCLN(12n+1;30n+2) thì d>1(*)
ta có:(12n+1) chia hết cho d;30n+2 chia hết cho d
=>5(12n+1)-2(30n+2) chia hết cho d
=>60n+5-60n-4 chia hết cho d
=>1 chia hết cho d,mâu thuẫn với (*)
do đó p/s 12n+1/30n+2 tối giản
Để chứng minh \(\frac{12n+1}{30n+2}\) tối giản thì ta phải chứng minh 12n+1 và 30n+2 là nguyên tố cùng nhau
Gọi d là ƯC ( 12n+1; 30n+2 )
⇒ 12n+1 ⋮ d ⇒ 60n+5 ⋮ d ( 1 )
⇒ 30n+2 ⋮ d ⇒ 60n+4 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) ⇒ [ ( 60n+5 ) - ( 60n+4 ) ] ⋮ d
⇒ 1 ⋮ d ⇒ d = 1
Vì ƯC(12n+1;30n+2) = 1 ⇒ 12n+1 và 30n+2 là nguyên tố cùng nhau
⇒ \(\frac{12n+1}{30n+2}\) tối giản .