Trong không gian với hệ tọa độ Oxyz cho tam giác ABC với A(1;0;0), B(3;2;4), C(0;5;4). Tìm tọa độ điểm M thuộc mặt phẳng Oxy sao cho M A → + M B → + 2 M C → nhỏ nhất.
A. M(1;-3;0)
B. M(1;3;0)
C. M(3;1;0)
D. M(2;6;0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
G 2 − 3 + 1 3 ; 2 + 5 − 1 3 ; − 2 + 1 − 2 3 = 0 ; 2 ; − 1 .
Đáp án A.
Gọi:
Phương trình mặt phẳng (P) có dạng:
Vì M là trực tâm của tam giác ABC nên
\(\overrightarrow{AA'}=\left(0;0;3\right)=\overrightarrow{BB'}=\overrightarrow{CC'}\)
\(\Rightarrow\left\{{}\begin{matrix}B'\left(0;2;3\right)\\C'\left(-1;0;3\right)\end{matrix}\right.\)
\(\Rightarrow G\left(0;\dfrac{2}{3};3\right)\)
Đáp án là B