Phân tích đa thức thành nhân tử:
36 - xy2 + y2 + 8y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) \(x^2\left(x+2y\right)-x-2y\)
\(=x^2\left(x+2y\right)-\left(x+2y\right)\)
\(=\left(x^2-1\right)\left(x+2y\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(x+2y\right)\)
4) \(x^3-4x^2-9x+36\)
\(=\left(x^3-4x^2\right)-\left(9x-36\right)\)
\(=x^2\cdot\left(x-4\right)-9\left(x-4\right)\)
\(=\left(x-4\right)\left(x^2-9\right)\)
\(=\left(x-4\right)\left(x+3\right)\left(x-3\right)\)
\(x^2\left(x+2y\right)-x-2y\\ =x^2\left(x+2y\right)-\left(x+2y\right)\\ =\left(x^2-1\right)\left(x+2y\right)\\ =\left(x-1\right)\left(x+1\right)\left(x+2y\right)\\ ---\\ x^3-4x^2-9x+36\\ =x^2\left(x-4\right)-9\left(x-4\right)\\ =\left(x^2-9\right)\left(x-4\right)\\ =\left(x-3\right)\left(x+3\right)\left(x-4\right)\)
a) ( x 2 – 4x + 1)( x 2 – 2x + 3). b) (3x – y – 1)(x – 7y – 1).
\(=x\left(y^2-4\right)+xz\left(y+2\right)\)
\(=x\left(y+2\right)\left(y-2\right)+x\left(y+2\right)z\)
\(=x\left(y+2\right)\left(y-2+z\right)\)
\(xy^2-4x+xyz+2xz\)
\(=x\left(y-2\right)\left(y+2\right)+zx\left(y+2\right)\)
\(=x\left(y+2\right)\left(y-2+z\right)\)
x3 + 2x2y + xy2 – 9x
(Có x là nhân tử chung)
= x(x2 + 2xy + y2 – 9)
(Có x2 + 2xy + y2 là hằng đẳng thức)
= x[(x2 + 2xy + y2) – 9]
= x[(x + y)2 – 32]
(Xuất hiện hằng đẳng thức (3)]
= x(x + y – 3)(x + y + 3)
x3 – 2x2 + x – xy2
(Có nhân tử chung x)
= x(x2 – 2x + 1 – y2)
(Có x2 – 2x + 1 là hằng đẳng thức).
= x[(x – 1)2 – y2]
(Xuất hiện hằng đẳng thức (3))
= x(x – 1 + y)(x – 1 – y)