Có bao nhiêu giá trị nguyên của m để phương trình 2 sin 2 x + 3 c o s 2 x = m .3 sin 2 x có nghiệm?
A. 7
B. 4
C. 5
D. 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Sử dụng tính đơn điệu của hàm số, đánh giá số nghiệm của phương trình.
Vậy, có 3 giá trị nguyên của m thỏa mãn yêu cầu đề bài.
Đáp án A
*Phương trình m + 3 m + 3 sin x 3 3 = sin x ⇔ m + 3 m + 3 sin x 3 = sin 3 x
⇔ ( m + 3 sin x ) + 3 m + 3 sin x 3 = sin 3 x + 3 sin x ( 1 )
* Xét hàm số f ( t ) = t 3 + 3 t trên ℝ . Ta có f ' ( t ) = 3 t 2 + 3 > 0 ∀ t ∈ ℝ nên hàm số f(t) đồng biến trên ℝ .
Suy ra (1) f 3 + 3 sin x 3 f ( sin x ) ⇔ 3 + 3 sin x 3 = sin x
Đặt sin x = t, t ∈ [ - 1 ; 1 ] Phương trình trở thành t 3 - 3 t = m
* Xét hàm số g(t) trên t ∈ - 1 ; 1 Ta có g ' ( t ) = 3 t 2 - 3 ≤ 0 , ∀ t ∈ [ - 1 ; 1 ] và g ' ( t ) = 0 ⇔ t = ± 1 Suy ra hàm số g(t) nghịch biến trên [-1;1]
* Để phương trình có nghiệm đã cho có nghiệm thực ⇔ Phương trình t 3 - 3 t = m có nghiệm trên [-1;1]
m i n [ - 1 ; 1 ] g ( t ) ≤ m ≤ m a x [ - 1 ; 1 ] g ( t ) ⇔ g ( 1 ) ≤ m ≤ g ( - 1 ) ⇔ - 2 ≤ m ≤ 2
Vậy có 5 giá trị nguyên của m thỏa mãn là m ∈ - 2 ; - 1 ; 0 ; 1 ; 2
\(\Leftrightarrow1-2sin^2x+\left(2m-3\right)sinx+m-2=0\)
\(\Leftrightarrow2sin^2x-\left(2m-3\right)sinx-m+1=0\)
\(\Leftrightarrow2sin^2x+sinx-2\left(m-1\right)sinx-\left(m-1\right)=0\)
\(\Leftrightarrow sinx\left(2sinx+1\right)-\left(m-1\right)\left(2sinx+1\right)=0\)
\(\Leftrightarrow\left(2sinx+1\right)\left(sinx-m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\dfrac{1}{2}\\sinx=m-1\end{matrix}\right.\)
Pt có đúng 2 nghiệm thuộc khoảng đã cho khi và chỉ khi:
\(\left\{{}\begin{matrix}m-1\ne-\dfrac{1}{2}\\-1\le m-1\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\0\le m\le2\end{matrix}\right.\)
Đáp án B