Cho tam giác ABC có góc A nhỏ hơn 90 độ . Vẽ ra phía ngoài của tam giác đó hai đoạn thẳng AD vuông góc và bằng AB ; AE vuông góc và bằng AC . Gọi H là trung điểm của BC .
Chứng minh rằng tia HA vuông góc với DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: góc DAC= góc DAB + góc BAC
góc BAE= góc EAC+ góc CAB
Mà góc DAB= góc EAC=90 độ
=> góc DAC= góc BAE
Xét tam giác DAC và tam giác BAE có:
AD=AB
góc DAC= góc BAE
AC=AE
=> tam giác DAC= tam giác BAE ( c.g.c)
=> DC=BE
Gọi I và H lần lượt là giao điểm của DC với AB và BE
Ta có: góc D+ góc DAH+ góc DHA= góc B+ góc BHI+ góc BIH= 180 độ
Mà góc D= góc B ( tam giác DAC= tam giác BAE) va góc DHA = góc BHI ( hai góc đôi đỉnh)
=> góc DAH= góc BIH
Mà góc DAH=90 độ=> góc BIH=90 độ=> DC vuông góc vs BE
Các bn xem thử đúng ko nhé , mai mk kiểm tra 45' , cần ý kiến gấp
a) xét tg AMC và tg ABN có
MA=BA(gt)
CA=AN(gt)
ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)
=>(kết luận)...
b)gọi I là giao điểm của MC và BN
gọi giao điểm của BA và MI là F
vì ΔAMC=ΔABNΔAMC=ΔABNnên
ˆFMA=ˆFBIFMA^=FBI^
mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O
=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O
Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O
Mà ˆIMB+ˆMBIIMB^+MBI^=900
=>...
Tự vẽ hình nha!~Giải:
Kẻ AH cắt DE tại F
Trên tia đối HA lấy N sao cho HA = HN
Ta có : AN cắt BC tại H
Mà H là trung điểm của AN và BC
=> Tứ giác ACNB là hình bình hành
=> AB // CN và CN = AB = AD
Ta có : góc DAE + góc EAC + góc DAB + góc BAC
= 360*.gócDAE + góc EAC + góc DAB + góc BAC = 360*
=> góc DAE + góc BAC = 360* - góc EAC - góc DAB
= 360* - 90* - 90*
= 180*.góc DAE + góc BAC
= 360* - góc EAC - góc DAB
= 360* - 90* - 90* 180*
Mà góc ACN + góc BAC = 180*. góc ACN + góc BAC = 180* (góc trong cùng phía )
=> góc DAE = góc ACN + góc DAE = góc ACN
Xét ΔDAE và ΔNCA có:
AE = AC
góc DAE = góc ACN
AD = CN
=> Vậy ΔDAE = ΔNCA (c.g.c)
Ta có: góc FAE + góc EAC + góc CAH = 180*
<=> góc FAE + góc CAH = 180* - góc EAC
= 180* − 90* = 90*
Mà góc CAH = góc FEA ( vì ΔDAE = ΔNCA)
góc FAE + góc FEA = 90*
=> ΔAEF ⊥ tại F
=> AH ⊥ DE (đpcm)
a) Ta có: góc DAC= góc DAB + góc BAC
góc BAE= góc EAC+ góc CAB
Mà góc DAB= góc EAC=90 độ
=> góc DAC= góc BAE
Xét tam giác DAC và tam giác BAE có:
AD=AB
góc DAC= góc BAE
AC=AE
=> tam giác DAC= tam giác BAE ( c.g.c)
=> DC=BE
Gọi I và H lần lượt là giao điểm của DC với AB và BE
Ta có: góc D+ góc DAH+ góc DHA= góc B+ góc BHI+ góc BIH= 180 độ
Mà góc D= góc B ( tam giác DAC= tam giác BAE) va góc DHA = góc BHI ( hai góc đôi đỉnh)
=> góc DAH= góc BIH
Mà góc DAH=90 độ=> góc BIH=90 độ=> DC vuông góc vs BE