Cho dãy số u n được xác định bởi u 1 = 3 2 n + 1 u n + 1 = n u n + n + 2 . Tính lim u n .
A. lim u n = 1
B. lim u n = 4
C. lim u n = 3
D. lim u n = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Phương pháp: Tìm công thức số hạng tổng quát
Cách giải: Ta có:
u ( 1 ) = 1
u ( 2 ) = u ( 1 ) + u ( 1 ) = 2 u ( 1 ) + 1
u ( 3 ) = u ( 2 ) + u ( 1 ) = 3 u ( 1 ) + 1 + 2
u ( 4 ) = u ( 3 ) + u ( 1 ) = 4 u ( 1 ) + 1 + 2 + 3
. . .
u ( 2017 ) = u ( 2016 ) + u ( 1 ) = 2017 u ( 1 ) + 1 + 2 + 3 . . . + 2016
⇒ u ( 2017 ) = 1 + 2 + 3 . . . + 2016 + 2017 = 2035153
1. a) Lấy biến C để tính un và E để tính sn và D là biến đếm. Ta có quy trình bấm phím liên tục
D=D+1:C=2B+A:E=E+C:A=B:B=C
CALC giá trị A=2; B=20; D=2; E=22 nhấn "=" liên tục
Kết quả: u20 = 137990600; s20 = 235564680; u30 = 928124755084; s30 = 1584408063182
2. Lấy A làm biến lẻ, B làm biến chẵn, C là tổng S, D là biến đếm. Ta có quy trình bấm phím liên tục
D=D+1:A=2B+3A:C=C+A:D=D+1:B=2A+3B:C=C+B
CALC giá trị D=2; A=1; B=2; C=3 nhấn "=" liên tục
a) Kết quả: u10 = 28595; u15 = 8725987; u20 = 3520076983
b) Kết quả: s10 = 40149; s15 =13088980 ; s20 = 4942439711
u n + 1 = n u n + 1 2 ( n + 1 ) + 1 2 ≤ n 1 + 1 2 n 2 ( n + 1 ) + 1 2 ≤ 1 + 1 4 ( n + 1 ) ≤ 1 + 1 2 n
suy ra lim u n = 1