K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

Đáp án D

Phương pháp giải:

Dùng định lí Thalet, định lý Menelaus và phương pháp tỉ số thể tích để tính thể tích khối chóp theo tham số k.

Khảo sát hàm số chứa biến k để tìm giá trị lớn nhất – giá trị nhỏ nhất

Lời giải:

Gọi O là tâm của hình bình hành ABCD và  I = S O ∩ A M .

Ba điểm M,A,I thẳng hàng nên áp dụng định lý Menelaus cho tam giác SOC ta có:  S M M C . C A A O . O I I S = 1 ⇒ O I S I = 1 = k 2 .

29 tháng 8 2017

23 tháng 9 2018

21 tháng 10 2017

Đáp án D

Gọi O là tâm của hình bình hành ABCD, nối  S O ∩ A M = I

Qua I kẻ đương thẳng d, song song với BD cắt SB, SD lần lượt tại H, K suy ra S H S B = S K S D = S I S O .  

Điểm M ∈ S C thỏa mãn  5 S M = 2 S C ⇒ S M S C = 2 5

Xét tam giác SAC, có:

M S M C . A C A O . I O I   S = 1 ⇒ I O S I = 4 3 ⇒ S I S O = 3 7

Khi đó:

V S . A K M V S . A D C = S K S D . S M S C ; V S . A H M V S . A B C = S H S B . S M S C  

Suy ra:

V S . A H M K V S . A B C D = S M S C . S H S B = 2 5 . 3 7 = 6 35 ⇒ V S . A H M K = 6 36 V S . A B C D

14 tháng 8 2019

Đáp án D

 

30 tháng 9 2018

Đáp án D

Gọi O là tâm của hình bình hành ABCD, nối  S O ∩ A M = I .

Qua I kẻ đường thẳng d, song song với BD cắt SB, SD lần lượt tại H, K suy ra 

16 tháng 1 2017

Đáp án D

 

10 tháng 1 2018

11 tháng 2 2017

Chọn A

Gọi O là gia điểm của hai đường chéo của hình bình hành ABCD. Gọi I là giao điểm của SO và AM. Khi đó

8 tháng 1 2017