Cho hình chóp tam giác đều có cạnh đáy bằng 6 và chiều cao h = 1 . Diện tích của mặt cầu ngoại tiếp hình chóp đó là.
A. S = 9 π
B. S = 6 π
C. S = 5 π
D. S = 27 π
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi I là tâm mặt cầu ngoại tiếp hình chóp
I G = x ⇒ S I = 3 - x A I 2 = x 2 + 1 3 = 3 - x 2 = S I 2 ⇔ x = 4 3 3 ⇒ A I 2 = R 2 = 25 27 S = 4 πR 2 = 100 π 27
Hướng dẫn: D
+ Gọi x > 0 là cạnh của hình vuông ABCD và H là trung điểm cạnh AD
+ Dễ dàng chứng minh
+ Gọi O = AC ∩ BD và G là trọng tâm ∆ A S D , đồng thời d 1 , d 2 lần lượt là 2 trục đường tròn ngoại tiếp ABCD, ∆ S A D ( d 1 qua O và // SH, d 2 qua G và //AB)
⇒ I = d 1 ∩ d 2 là tâm mặt cầu ngoại tiếp khối chóp S. ABCD ⇒ R = SI
(trong video bài giảng chữa đề, phần này Thầy dùng công thức tính nhanh bán kính mặt cầu ngoại tiếp hình chóp trong trường hợp chóp có mặt bên vuông góc với mặt đáy).
+ Gọi E là điểm thỏa ADEC là hình bình thành
Đáp án A
A G = 2 3 A H = 2
Trong Δ S G A c ó S A = A G 2 + S G 2 = 3
Gọi E là trung điểm của cạnh SA. Mặt phẳng
trung trực cạnh SA cắt SG tại I suy ra IS = I A = I B = I C
Suy ra I là tâm mặt cầu ngoại tiếp khối chóp S.ABC
Ta có Δ S E I ~ Δ S G A suy ra S E S G = I S S A ⇒ I S = S E . S A S G = 3 2
S M a t c a u = 4 π R 2 = 9 π