Một nhóm học sinh gồm 5 bạn nam, và 3 bạn nữ cùng đi xem phim, có bao nhiêu cách xếp 8 bạn vào 8 ghế hàng ngang sao cho 3 bạn nữ ngồi cạnh nhau?
A.5!.3!
B. 8! – 5.3!.
C.6!.3!.
D. 8 ! 3 ! .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Số phần tử của không gian mẫu:
Gọi A là biến cố: “cặp sinh đôi ngồi cạnh nhau và nam nữ không ngồi đối diện nhau”.
Ta tính n() như sau:
Đánh số các ghế ngồi của 8 học sinh như hình vẽ sau:
- Để xếp cho cặp sinh đôi ngồi cạnh nhau có 6 cách.
- Mỗi cách như vậy có cách đổi chỗ.
- Với mỗi cách xếp cặp sinh đôi, ví dụ: Cặp sinh đôi ở vị trí 1 và 2.
Do nam nữ không ngồi đối diện nên:
+ Vị trí 5 và 6 đều có 3 cách.
+ Vị trí 3 có 4 cách, vị trí 7 có 1 cách.
+ Vị trí 4 có 2 cách, vị trí 8 có 1 cách.
Suy ra n(A) = 6.2.3.3.4.1.2.1 = 864
a: Số cách xếp là: \(A^5_{10}=30240\left(cách\right)\)
b: TH1: 3 nam 2 nữ
=>Số cách xếp là: \(3!\cdot2!\cdot2!\)(cách)
TH2: 2 nam 3 nữ
=>Số cách xếp là: 2!*3!*2!(cách)
TH3: 1 nam 4 nữ
=>Số cách xếp là 1!*4!*2!(cách)
TH4: 0 nam 5 nữ
=>Số cách xếp là 5!(cách)
=>Số cách là \(2!\cdot2!\cdot3!+2!\cdot2!\cdot3!+1!\cdot4!\cdot2!+5!\left(cách\right)\)
c: Số cách chọn 2 nữ trong 7 nữ là:
\(C^2_7\left(cách\right)\)
Số cách xếp 3 nam và 2 nữ là:
\(3!\cdot3!\left(cách\right)\)
=>Số cách là: \(C^2_7\cdot3!\cdot3!\left(cách\right)\)
Để xác định, các ghế được đánh số từ 1 đến 10 tính từ trái sang phải.
a) Nếu các bạn nam ngồi ở các ghế ghi số lẻ thì các bạn nữ ngồi ở các ghế còn lại. Có 5! cách xếp bạn nam, 5! cách xếp bạn nữ. Tất cả có 5 ! 2 cách xếp.
Nếu các bạn nam ngồi ở các ghế ghi số chẵn, các bạn nữ ngồi ở các ghế còn lại thì có 5 ! 2 cách xếp nam và nữ.
Vậy có tất cả 2. 5 ! 2 cách xếp nam nữ ngồi xen kẽ nhau.
b) Các bạn nam được bố trí ngồi ở các ghế từ k đến k + 4, k = 1, 2, 3, 4, 5, 6. Trong mỗi trường hợp có 5 ! 2 cách xếp nam và nữ.
Vậy có 6. 5 ! 2 cách xếp mà các bạn nam ngồi cạnh nhau.
a) Xếp 6 nam vào 6 ghế cạnh nhau. Có 6! cách.
Giữa các bạn nam có 5 khoảng trống cùng hai đầu dãy, nên có 7 chỗ có thể đặt ghế cho nữ.
Bây giờ chọn 4 trong 7 vị trí để đặt ghế. Có cách.
Xếp nữ vào 4 ghế đó. Có 4! cách.
Vậy có cách xếp mà không có hai bạn nữ nào ngồi cạnh nhau.
b) Xếp 6 ghế quanh bàn tròn rồi xếp nam vào ngồi. Có 5! cách.
Giữa hai nam có khoảng trống. Xếp 4 nữ vào 4 trong 6 khoảng trống đó. Có cách.
Theo quy tắc nhân, có cách.
Để xác định, các ghế được đánh số thứ tự từ 1 đến 10 tính từ trái sang phải.
a) Nếu các bạn nam ngồi ở các ghế ghi số lẻ thì các bạn nữ ngồi ở các ghế còn lại. Có 5! cách xếp bạn nam, 5! cách xếp bạn nữ. Tất cả có \(\left(5!\right)^2\) cách xếp
Nếu bạn nam ngồi ở các ghế ghi số chẵn, các bạn nữ ngồi ở các ghế còn lại thì có \(\left(5!\right)^2\) cách xếp nam và nữ. Vậy có tất cả \(2.\left(5!\right)^2\) cách xếp nam nữ ngồi xen kẽ nhau.
b) Các bạn nam được bố trí ngồi ở các ghế từ \(k\) đến \(k+4,k=1,2,3,4,5,6\). Trong mỗi trường hợp có \(\left(5!\right)^2\) cách xếp nam và nữ. Vậy có \(6.\left(5!\right)^2\) cách xếp mà các bạn nam ngồi cạnh nhau.
Chọn C.
Ta coi 3 bạn nữ là vị trí thì số cách sắp xếp 6 là 6!, sau đó xếp 3 bạn nữ vào vị trí đó là 3! Nên số cách sắp xếp là 6!.3!