Thánh nào giỏi toán giúp em mấy bài này với
giải bất phương trình:x(x-3)>0
Cm bất đẳng thức: a^4+b^4+c^4 >= a^2b^2+b^2c^2+c^2a^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a+2c> b+c$
$\Rightarrow a> b-c$
Không có cơ sở nào để xác định xem biểu BĐT nào đúng.
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\)
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{4}{2a+b+c}\)
\(\dfrac{1}{a+c}+\dfrac{1}{b+c}\ge\dfrac{4}{a+b+2c}\)
\(\Rightarrow2\dfrac{1}{a+b}+2\dfrac{1}{b+c}+2\dfrac{1}{a+c}\ge\dfrac{4}{2a+b+c}+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\)
\(\Leftrightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge2\left(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\right)\left(ĐPCM\right)\)
Ta có a,b>0, áp dụng bất đẳng thức Cô - si cho hai số không âm:
chú ý: MÌNH DÙNG CHỮ v TƯỢNG TRƯNG CHO DẤU CĂN.
ta có : (1/a+1/b)/2>=v(1/a*1/b)
=>1/a + 1/b >= 2*1/v(a*b)
mà v(a*b)<=(a+b)/2
=> 2*1/v(a*b) >= 2*1/((a+b)/2) = 4(a+b)
=>1/a + 1/b >= 4(a+b) (đpcm).
Cmr: 1/(a+b) + 1/(a+c) + 1/(b+c)>=2(1/(2a+b+c) + 1/...
chú ý: MÌNH DÙNG CHỮ v TƯỢNG TRƯNG CHO DẤU CĂN.
ta cũng áp dụng bất đẳng thức cô si cho hai số không âm:
1/(a+b) + 1/(b+c) >=2*1/(v(a+b)*(a+c))
tương tự với 1/(a+b) + 1/(b+c) >= 2*1/(v(a+b)*(b+c))
tương tự với 1/(a+c) + 1/(b+c) >= 2*1/1/(v(a+c)*(b+c))
=>2(1/(a+b) + 1/(a+c) + 1/(b+c))>=2*[1/(v(a+b)*(a+c))+v(a+b)*(b+... (1)
mà v((a+b)*(a+c))<=(a+b+a+c)/2=(2a+b+c)
=>1v(a+b)*(a+c)>=2(2a+b+c)
tương tự ta có 1v(a+b)*(b+c)>=2(2b+a+c)
=> 1/[v(a+b)*(a+c))+v(a+b)*(b+c))+1/(v(a+b)... >=2[1/(2a+b+c) + 1/(2b+a+c) + 1/(2c+a+b)] (2)
Từ (1) và (2) ta suy ra điều phải chứng minh.
tương tự ta có 1v(a+c)*(b+c)>=2(2c+a+b)
a: \(\Leftrightarrow a^2-4a+4+b^2-6b+9+c^2-2c+1>=0\)
\(\Leftrightarrow\left(a-2\right)^2+\left(b-3\right)^2+\left(c-1\right)^2>=0\)
Dấu '=' xảy ra (a,b,c)=(2;3;1)
P/S : sư phụ em tuổi già sức yếu , cầm cây bút cũng viết không nổi :v
bài này mình nghĩ chắc giả sử á , cũng chưa thử ((:
để tí hỏi sư phụ xem đã
không cần giỏi cũng giải được mà. cứ giải đi không cần biết đúng hay sai là được
THẾ LÀ GIỎI RÙI
nhưng mình nghĩ mãi không ra nếu bạn nói được như vậy thì thử giải giúp mình xem