Tìm tất cả các giá trị thực của tham số m để bất phương trình 2 x 2 + x + 2 2 x + 1 > m có nghiệm trong khoảng − ∞ ; − 1 .
A. m ∈ − 3 ; + ∞ .
B. m ∈ [ - 3 ; + ∞ ) .
C. m ∈ − ∞ ; − 5 2 .
D. m ∈ − ∞ ; - 5 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Bất phương trình ⇔ log 2 5 x - 1 1 + log 2 5 x - 1 ≥ m
Đặt t = log 2 5 x - 1 , do x ≥ 1 ⇒ t ∈ [ 2 ; + ∞ )
Bất phương trình t 2 + t ≥ m ⇔ f ( t ) ≥ m
Với f ( t ) = t 2 + t , f ' ( t ) = 2 t + 1 > 0 với t ∈ [ 2 ; + ∞ ) nên hàm số f ( t ) đồng biến nên min ( t ) = f ( 2 ) = 6
Do đó theo bài ra để bất phương trình có nghiệm x ≥ 1 thì m ≤ min f ( t ) ⇔ m ≤ 6
2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)
Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)
Đáp án C
Vậy để bpt có nghiệm trong ( − ∞ ; − 1 ) ⇒ m < − 5 2