Cho hàm số y = f x xác định trên ℝ \ ± 1 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ. Số đường tiệm cận của đồ thị hàm số là
A. 1
B. 2
C. 3
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Từ bảng biến thiên ta thấy l i m x → + ∞ y = 5 ; l i m x → ∞ y = 3 đồ thị hàm số có hai đường tiệm cận ngang là y=5 và y=3. Và l i m x → 1 - y = - ∞ ⇒ x = 1 là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có tất cả là ba đường tiệm cận
Đáp án D.
Nhìn vào bảng ta thấy các đường tiệm cận là y = 1 ; x = − 1. Vậy đồ thị có 2 đường tiệm cận.
Chọn C.
Phương pháp: Dựa vào bảng biến thiên để xác định tiệm cận, cực trị, giá trị lớn nhất, giá trị nhỏ nhất.
Cách giải: Dựa vào bảng biến thiên dễ thấy đồ thị hàm số có tiệm cận ngang y = 0 và hai tiệm cận đứng x = 2, x = -2. Vậy (I) sai và (IV) đúng.
Đáp án là D
Từ BBT ta có
lim x → + ∞ y = − 1 ; lim x → − ∞ y = 1 do đó đồ thị hàm số có hai đường tiệm cận ngang là
y = 1; y =−1.
lim x → 1 − y = + ∞ ; lim x → 1 − y = − ∞ do đó đồ thị hàm số có một đường tiệm cận đứng là x =1. Vậy tổng số có 3 đường tiệm cận
Đáp án C
Các đường tiệm cận đứng là x = 1 ; x = − 1.
Tiệm cận ngang là y = − 2
Vậy có tất cả 3 đường tiệm cận