Cho hình chóp S.ABC có SA vuông góc với (ABC) tam giác ABC là tam giác vuông cân tại A,AB = 2a góc giữa (SBC) và mặt đáy bằng 60 ° Thể tích khối chóp S.ABC là:
A. 125 2 a 3 6
B. 3 6 a 3 4
C. 16 2 a 3 3
D. 2 6 a 3 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là D
Gọi H là trung điểm của BC, ta có: AH ⊥ BC
Do SA ⊥ (ABC)
Ta có:
Xét tam giác vuông SAH:
Chọn C.
Phương pháp: Tính thể tích khối chóp theo công thức V = 1 3 B h
Đáp án A
Dễ thấy ( S C , ( A B C ) ) ^ = SAC (vì SA ⊥ (ABC))
ð SA = AC.tan60° = a 3
Ta có:
V S A B C = 1 3 . S A B C . a 3 = 1 3 . 1 2 . a . a . a 3 = a 3 3 6
Đáp án B
Ta có BC ⊥ AC và BC ⊥ SC, do đó góc giữa mp (SBC) và mp (ABC) chính là góc SCA.
Mặt khác
Vì tam giác SAC vuông tại A nên ta có
đặt t = sin α ta có hàm số thể tích theo t như sau