Số đo góc tạo bởi hai tia phân giác của hai góc kề bù bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nay ban, to viet dau (gach cheo''/'') la phan nhe!
Goc tao boi hai tia phan giac cua goc ke bu bang 900
Vi Goc ke bu co tong so do bang 1800
Muon tinh goc tao boi hai tia phan giac cua hai goc ke bu ta chi viec lay:
1800x1/2=900
Hai góc kề bù có tổng số đo là 1800
=> Góc tạo bởi 2 tia p/giác của hai góc kề bù bằng nửa tổng số đo của chúng:
= 1/2 . 1800 = 900 (tạo thành góc vuông).
=90 độ
vì 90độ là góc vuông (cũng chả biết giải thích làm sao nữa, nhưng hầu như bài toán nào cũng thế)
90 độ
vì góc kề bù có số đo là 180 độ mà tạo bởi hai tia phân giác thi mỗi góc đương nhiên = 90 độ
Gọi \(\widehat{xOz}\), \(\widehat{zOy}\) là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của \(\widehat{xOz}\) , \(\widehat{zOy}\)
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy, nên:
\(\hept{\begin{cases}\widehat{uOz}=\widehat{xOu}=\frac{\widehat{xOz}}{2}\\\widehat{zOv}=\widehat{yOv}=\frac{\widehat{zOy}}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\widehat{uOz}=\widehat{xOz}\\2\widehat{zOv}=\widehat{zOy}\end{cases}}\)
Ta lại có:
\(\widehat{xOz}+\widehat{zOy}=180^0\) ( kề bù )
\(\Rightarrow2\widehat{uOz}+2\widehat{zOv}=180^0\)
\(\Rightarrow2\left(\widehat{uOz}+\widehat{zOv}\right)=180^0\)
\(\Rightarrow\left(\widehat{uOz}+\widehat{zOv}\right)=180^0\div2\)
\(\Rightarrow\left(\widehat{uOz}+\widehat{zOv}\right)=90^0\)
\(\Rightarrow\widehat{uOv}=90^0\) (vì 2 góc uOz, góc zOv kề nhau)
\(\Rightarrow\) Tia Ou vuông góc tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.
ta có góc AOE+EOC=180
MÀ BOC=AOB, OED=DOC
vậy BOC+DOE=\(\frac{AOE+EOC}{2}=\frac{180}{2}=90\)
Ta có: \(\widehat{xOm}=\widehat{mOz}=\frac{\widehat{xOz}}{2}\) (vì Om là tia phân giác của xOz)
\(\widehat{zOn}=\widehat{nOy}=\frac{\widehat{yOz}}{2}\) (vì On là tia phân giác của yOz)
Có: \(\widehat{mOn}=\widehat{mOz}+\widehat{zOn}=\frac{\widehat{xOz}}{2}+\frac{\widehat{yOz}}{2}=\frac{\widehat{xOz}+\widehat{yOz}}{2}=\frac{180^o}{2}=90^o\)
=> Om _|_ On (đpcm)
mOz=12ˆxOzˆmOz=12^xOz^ (1)(1) ( vì Om là hai tia phân giác của xOzˆxOz^ )
zOnˆ=12zOyˆzOn^=12zOy^ (2)(2) ( vì On là hai tia phân giác của zOyˆzOy^ )
Từ (1)(1) và (2)(2) , ta có :
mOzˆ+zOnˆ=12.(xOzˆ+zOyˆ)mOz^+zOn^=12.(xOz^+zOy^) (3)(3)
Vì tia OzOz nằm giữa hai tia Om,OnOm,On và vì xOzˆxOz^ và zOyˆzOy^ kề bù (gt)(gt)
Nên từ (3)(3) ⇒mOnˆ=12.1800⇒mOn^=12.1800
Hay mOnˆ=900
90 độ
mình nhá bạn mình đi