K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 11 2021

Lời giải:

Theo định lý Fermat nhỏ thì: $3^{10}\equiv 1\pmod {11}; 4^{10}\equiv 1\pmod {11}$

$\Rightarrow$:

$3^{2021}=(3^{10})^{202}.3\equiv 3\pmod {11}$

$4^{2021}=(4^{10})^{202}.4\equiv 4\pmod {11}$

$\Rightarrow A=3^{2021}+4^{2021}\equiv 3+4\equiv 7\pmod {11}$

Tức $A$ chia $11$ dư $7$

---------------------------------

Tương tự:

$3^{12}\equiv 1\pmod {13}$

$\Rightarrow 3^{2021}=(3^{12})^{168}.3^5\equiv 3^5\equiv 9\pmod {13}$

Tương tự: $4^{2021}\equiv 4^5\equiv 10\pmod {13}$

$\Rightarrow A\equiv 9+10\equiv 6\pmod {13}$

Vậy $A$ chia $13$ dư $6$

8 tháng 11 2021

đây nha :
a=3+3^2+3^3+ ...+3^2021

 =(3+3^2+3^3)+...+(3^2019+3^2020+3^2021)

=12+...+(3^2018.3+3^2018.3^2+3^2018.3^3)

=12+...+(3^2018.12)

=12.(3^4+3^6+...+3^2018)

Vì A chia hết cho 12 nên khi chia cho 13 sẽ dư 1 

18 tháng 10

Bn ơi sau 3²+ là 3 mũ mấy thế bn

10 tháng 11 2021

giúp mình với

27 tháng 11 2021

Ta có : A + 1 = 1 + 3 + 32 + 33 + 34 + 35 + ... + 32019 +3 2020 +  32021 

= (1 + 3 + 32) + (33 + 34 + 35) + ...+  (32019 + 32020 +  32021

=  (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 32019(1 + 3 + 32

=  (1 + 3 + 32)(1 + 33 + ... + 32019

= 13(1 + 33 + ... + 32019 13

=> A + 1 13 

=> A : 13 dư 12 

Vậy số dư khi A : 13 là 12

25 tháng 12 2023

Số số hạng của A:

2021 - 1 + 1 = 2021 (số)

Do 2021 chia 3 dư 2 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 3 số hạng và dư 2 số hạng như sau:

A = 3 + 3² + (3³ + 3⁴ + 3⁵) + (3⁶ + 3⁷ + 3⁸) + ... + (3²⁰¹⁹ + 3²⁰²⁰ + 3²⁰²¹)

= 12 + 3³.(1 + 3 + 3²) + 3⁶.(1 + 3 + 3²) + ... + 3²⁰¹⁹.(1 + 3 + 3²)

= 12 + 3³.13 + 3⁶.13 + ... + 3²⁰¹⁹.13

= 12 + 13.(3³ + 3⁶ + ... + 3²⁰¹⁹)

Do 13.(3³ + 3⁶ + ... + 3²⁰¹⁹) ⋮ 13

⇒ A = 12 + 13.(3³ + 3⁶ + ... + 3²⁰¹⁹) chia 13 dư 12

Vậy A chia 13 dư 12

16 tháng 11 2021

\(+\)Ta thấy A có số số hạng là: \(\left(2021-1\right);1+1=2021\)(số)

\(+\)Ta nhóm \(3\)số hạng liên tiếp vào \(1\)nhóm, ta được: \(2021:3=673\)dư \(2\)số

\(\Rightarrow A=\left(3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2019}+3^{2020}+3^{2021}\right)\)

\(\Rightarrow A=\left(3+3^2\right)+\left(3^3\cdot1+3^3\cdot3+3^3\cdot3^2\right)+...+\left(3^{2019}\cdot1+3^{2019}\cdot3+3^{2019}\cdot3^2\right)\)

\(\Rightarrow A=\left(3+3^2\right)+3^3\cdot\left(1+3+3^2\right)+...+3^{2019}\cdot\left(1+3+3^2\right)\)

\(\Rightarrow A=12+3^3\cdot13+...+3^{2019}\cdot13\)

\(\Rightarrow A=12+13\cdot\left(3^3+3^6+3^9+...+^{2019}\right)\)

\(\hept{\begin{cases}12:13=0dư12\\13\cdot\left(3^3+3^6+3^9+...+3^{2019}\right)⋮13\end{cases}}\)

\(\Rightarrow A:13dư12\)

Vậy \(A:13dư12\)

CHÚC BẠN HỌC TỐT NHÉ

11 tháng 11 2021

Ta có A + 1 = 1 + 3 + 32 + 33 + 34 + 35 + ... + 32019 + 32020 + 32021 

= (1 + 3 + 32) + (33 + 34 + 35) + ... + (32019 + 32020 + 32021)

= (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 32019(1 + 3 + 32)

= (1 + 3 + 32)(1 + 33 + ... +  32019)

= 13(1 + 33 + ... +  32019\(⋮\)13

=> A : 13 dư 12

11 tháng 11 2021

\(A=3+3^2+3^3+...+3^{2021}\)

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2019}+3^{2020}+3^{2021}\right)\)

\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2019}\left(1+3+3^2\right)\)

\(A=3.13+3^4.13+...+3^{2019}.13\)

\(A=13\left(3+3^4+...+3^{2019}\right)\)

\(\Rightarrow A⋮13\)

Hay \(A:13\)k dư

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:

Áp dụng định lý Fermat nhỏ thì:

$2020^6\equiv 1\pmod 7$

$\Rightarrow (2020^6)^{336}.2020^4\equiv 1^{336}.2020^4\equiv 2020^4\pmod 7$

Có:

$2020\equiv 4\pmod 7$

$\Rightarrow 2020^4\equiv 4^4\equiv 256\equiv 4\pmod 7$

$\Rightarrow A\equiv 2020^4\equiv 4\pmod 7$

Vậy $A$ chia $7$ dư $4$

7 tháng 11 2021

Ta có : A + 1 = 1 + 3 + 32 + 33 + 34 + 35 + ... + 32019 +3 2020 +  32021 

= (1 + 3 + 32) + (33 + 34 + 35) + ...+  (32019 + 32020 +  32021

=  (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 32019(1 + 3 + 32

=  (1 + 3 + 32)(1 + 33 + ... + 32019

= 13(1 + 33 + ... + 32019\(⋮\) 13

=> A + 1 \(⋮\)13 

=> A : 13 dư 12 

Vậy số dư khi A : 13 là 12

AH
Akai Haruma
Giáo viên
28 tháng 1 2021

Lời giải:

Đặt $A=1-3+3^2-3^3+...-3^{2021}$

Dễ thấy $3,3^2,3^3,...,3^{2021}$ đều chia hết cho $3$

$1$ chia $3$ dư $1$

$\Rightarrow A=1-3+3^2-3^3+...-3^{2021}$ chia $3$ dư $1$.

Lại có:

$A=(1-3+3^2)-(3^3-3^4+3^5)+(3^6-3^7+3^8)-....-(3^{2019}-3^{2020}+3^{2021})$

$=(1-3+3^2)-3^3(1-3+3^2)+3^6(1-3+3^2)-....-3^{2019}(1-3+3^2)$

=(1-3+3^2)(1-3^3+3^6-....-3^{2019})$

$=7(1-3^3+3^6-...-3^{2019})\vdots 7$

Vậy $A$ chia hết cho $7$

17 tháng 11 2021

A=3+32+33"+........+32021

= (3+32+33)+.....+(32019+32020+32021)

= 3.(1+3+32)+............+32019.(1+3+32)

=3.13+..........+32019.13

=13.(3+......+32019) chia hết cho 13 vì có thừa số 13 chia hết cho 13.

=> Dư=0