Đường thẳng nối hai điểm cực trị của đồ thị hàm số y = m x 2 + 4 - 2 m x - 6 2 x + 9 cách gốc tọa độ một khoảng lớn nhất khi m bằng
A. 1 2
B. - 1 2
C. 2
D. 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có \(y'=3x^2-6mx+3(m+6)=0\) có hai nghiệm $x_1,x_2$ chính là hoành độ hai cực trị của đồ thị hàm số. Theo hệ thức Viet:
\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m+6\end{matrix}\right.(1)\)
Gọi đường thẳng qua hai điểm cực trị có PT \((d):y=ax+b\)
Ta có: \(\left\{\begin{matrix} y_1=ax_1+b=x_1^3-3mx_1^2+3(m+6)x_1+1\\ y_2=ax_2+b=x_2^3-3mx_2^2+3(m+6)x_2+1\end{matrix}\right.\)
Dựa vào $(1)$ và biến đổi đơn giản:
\(\Rightarrow a(x_1-x_2)=(x_1-x_2)[x_1^2+x_1x_2+x_2^2-3m(x_1+x_2)+3(m+6)]\)
\(\Rightarrow a=x_1^2+x_1x_2+x_2^2-3m(x_1+x_2)+3(m+6)=-2m^2+2m+12\)
\(\Rightarrow 2b=y_1+y_2-a(x_1+x_2)=2m^2+12m+2\Rightarrow b=m^2+6m+1\)
Do đó PTĐT thu được: \((d):y=(-2m^2+2m+12)x+m^2+6m+1\)
Chọn B.
Để đồ thị có 2 điểm cực trị thì PT y ' = 0 có 2 nghiệm phân biệt. Ta tìm được điều kiện m < 0 hoặc m > 14 33 . Khi đó đường thẳng nối hai điểm cực trị có phương trình là
Khoảng cách từ gốc tọa độ đến đường thẳng này là
(*)
Khi h = 1 thì m = 3 4 . Khi h ≠ 1 thì (*) là phương trình bậc 2 của m. Điều kiện cần và đủ để phương trình này có nghiệm là