Cho đồ thị hàm số y = f (x) như hình vẽ.
Phương trình x + 2 ( x - 1 ) 2 có đúng 2 nghiệm phân biệt khi và chỉ khi:
A. m < 0 m = 4
B. 0 ≤ m ≤ 4
C. m > 4 m = 0
D. m = 0 m = - 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án A
Phương pháp
+) Đặt t=2sinx, xác định điều kiện của t.
+) Khi đó phương trình trở thành f(t)=m. Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và đường thẳng y=m song song với trục hoành.
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và đường thẳng y=m song song với trục hoành.
⇒ Phương trình f(t)=m có 1 nghiệm t=2 và một nghiệm t ∈ - 2 ; 2 hoặc phương trình f(t)=m có 1 nghiệm t=-2 và một nghiệm t ∈ - 2 ; 2 .
Bất phương trình m > f(x) - ln(-x) đúng với mọi x ∈ - 1 ; - 1 e
Ta có
Suy ra hàm số g(x) đồng biến trên
Chọn D.