Hàm số f x = x 2 + 1 khi x ≤ 1 x + m khi x > 1 liên tục tại điểm x 0 = 1 khi m nhận giá trị
A. m=-2
B. m=2
C. m=-1
D. m=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Phương pháp: Hàm số y = f(x) liên tục tại
Cách giải:
f(1) = 2m+1
Để hàm số liên tục tại x = 1
Ta có lim x → 1 − f x = lim x → 1 − m x + 1 = m + 1
lim x → 1 + f x = lim x → 1 + x 3 − x 2 x − 1 = lim x → 1 + x − 1 x 2 x − 1 = lim x → 1 + x 2 = 1
f(1) = n
Để hàm số liên tục tại x= 1 thì lim x → 1 − f x = lim x → 1 + f x = f 1
Suy ra: m + 1 = 1= n nên n = 1 và m = 0
Chọn đáp án D.
Đáp án D
Ta có
lim x → 1 + f x = lim x → 1 + x + m = 1 + m lim x → 1 − f x = lim x → 1 − x 2 + 1 = 2 f 1 = 2
Hàm số liên tục tại diểm x 0 = 1 ⇔ lim x → 1 + f x = lim x → 1 − f x = f 1 ⇒ 1 + m = 2 ⇔ m = 1