chứng minh rằng abcdef chia hết cho11
biết ab+cd+ef chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab+cd+ef chia hết cho 11
nên 10a+10c+10e+b+d+f chia hết cho 12
hay 11(a+c+e)-a-c-e+b+d+f chia hết cho 11
suy ra 11(a+c+e) -(a+c+e-b-d-f) chia hết cho 11
mà 11(a+c+e ) chia hết cho 11 suy ra (a+c+e-b-d-f) chia hết cho 11
tick nha
Vì vaayjabcdef chia hết cho 11
b.ab+ba chia hết cho 11
=>10a+b + 10b+a chia hết cho 11
=>10a+a + 10b+b chia hết cho 11
=>11a+11b chia hết cho 11(đfcm)
abcdeg = 10000.ab +100.cd + eg = 9999.ab + 99.cd + (ab+cd+eg)
vì 9999.ab chia hết cho 11,99.cd chia hết cho 11 và ab+cd+ag chia hết cho 11
⇒abcdeg chia hết cho 11 (dpcm)
Thay g = f nhé bạn
abcd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>ab.99+(ab+cd) chia hết cho 99
Vi ab.99 chia hết cho 99
Nen ab+cd chia hết cho 99 (ĐPCM)
Ta có:
abcdef = 10000ab + 100cd + ef
abcdef = 9999ab + 99cd + ab + cd + ef
Vì 9999ab và 99cd chia hết cho 11 \(\Rightarrow\)Nếu ab + cd + ef \(⋮\)11 thì abcdef \(⋮\)11 .
\(\text{Câu 1: CMR: Nếu \overline{ab}+\overline{cd}+\overline{eg} chia hết cho 11}\)
abcdef=ab*10000+cd*100+ef
Vì ab chia hết cho 11 vậy ab*10000 cũng chia hết cho 11, cd cũng vậy và ef cũng như thế. Vậy tổng của chúng chia hết cho 11
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)