x+5-3=4
10-x+3=4+3+1
tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{8}=\frac{-2}{5}\cdot\frac{3}{16}\)
\(\frac{x}{8}=\frac{-3}{40}\)
\(\Rightarrow x=\frac{8.\left(-3\right)}{40}=\frac{-3}{5}\)
a, x+15=20-4x
=> x + 4x = 20 - 15
=> 5x = 5
=> x = 5 : 5
=> x = 1
b, 17-x=7-6x
=> -x + 6x = 7 - 17
=> 5x = - 10
=> x = -10 : 5
=> x = -2
c, 4.(x-5)-3.(x+7)= -19
=> 4x - 4.5 - 3.x + 3.7 = -19
=> 4x - 20 - 3x + 21 = -19
=> (4x-3x) + (21-20) = -19
=> 1x + 1 = -19
=> x = -19 - 1
=> x = -18
d, -7.(5-x)-2.(x-10)=15
=> -7x - (-7).5 - 2x - 2.10 = 15
=> -7x - (-35) - 2x - 20 = 15
=> -7x + 35 - 2x - 20 = 15
=> -7x+2x + (35-20) = 15
=> -5x + 15 = 15
=> -5x = 15 - 15
=> -5x = 0
=> x = 0 : (-5)
=> x = 0
e, -5.(2-x)+4.(x-3) = 10.x-15
=> -5x - (-5).2 + 4x - 4.3 = 10x - 15
=> -5x - (-10) + 4x - 12 = 10x - 15
=> -5x + 10 + 4x - 12 = 10x - 15
=> (-5x+4x) - (12-10) = 10x - 15
=> -1x - 2 = 10x - 15
=> -1x - 10x = -15 + 2
=> -11x = -13
=> x = \(\frac{-13}{-11}\)
b) Theo đề ra, ta có:
\(3x=5y\Rightarrow\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{6}\)
\(5y=6z\Rightarrow\frac{y}{6}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{6}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỷ số bằng nhau
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{5}=\frac{x-y}{10-6}=1\)
\(\Rightarrow x=1.10=10\)
\(\Rightarrow y=1.6\)
\(\Rightarrow z=1.5=5\)
Bài 1:
a) \(A=-\left(2x-5\right)^2+6\left|2x-5\right|+4=-\left[\left(2x-5\right)^2-6\left|2x-5\right|+9\right]+13=-\left(\left|2x-5\right|-3\right)^2+13\le13\)
\(maxA=13\Leftrightarrow\) \(\left[{}\begin{matrix}2x-5=3\\2x-5=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)
b) \(B=-x^2-y^2+2x-6y+9=-\left(x^2-2x+1\right)-\left(y^2+6y+9\right)+19=-\left(x-1\right)^2-\left(y+3\right)^2+19\le19\)
\(maxC=19\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
Bài 2:
\(A=2\left(x^3-y^3\right)-3\left(x+y\right)^2=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=4\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)
bài 2
\(A=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(A=2.2\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(A=\left(4x^2+4xy+4y^2\right)+\left(-3x^2-6xy-3y^2\right)\)
\(A=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)
\(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{x-1}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
\(A< \dfrac{3}{5}\Rightarrow\dfrac{3}{5}-A>0\Rightarrow\dfrac{3}{5}-\dfrac{\sqrt{x}-3}{\sqrt{x}-1}>0\)
\(\Rightarrow\dfrac{3\left(\sqrt{x}-1\right)-5\left(\sqrt{x}-3\right)}{5\left(\sqrt{x}-1\right)}>0\Rightarrow\dfrac{12-2\sqrt{x}}{5\left(\sqrt{x}-1\right)}>0\)
\(\Rightarrow\dfrac{2}{5}.\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\Rightarrow\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}6-\sqrt{x}>0\\\sqrt{x}-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}6-\sqrt{x}< 0\\\sqrt{x}-1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}1< x< 36\\\left\{{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\left(l\right)\end{matrix}\right.\)
\(\Rightarrow1< x< 36\)
\(=>A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
để \(A< \dfrac{3}{5}< =>\dfrac{\sqrt{x}-3}{\sqrt{x}-1}< \dfrac{3}{5}\)
\(< =>\dfrac{5\left(\sqrt{x}-3\right)-3\left(\sqrt{x}-1\right)}{5\left(\sqrt{x}-1\right)}< 0\)
\(< =>\dfrac{2\sqrt{x}-12}{5\left(\sqrt{x}-1\right)}< 0\)
\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}2\sqrt{x}-12>0\\5\left(\sqrt{x}-1\right)< 0\end{matrix}\right.\\\left[{}\begin{matrix}2\sqrt{x}-12< 0\\5\left(\sqrt{x}-1\right)>0\end{matrix}\right.\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\\\left[{}\begin{matrix}x< 36\\x>1\end{matrix}\right.\end{matrix}\right.=>1< x< 36\left(tm\right)\)
2/ \(P=\frac{2-5\sqrt{x}}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\)
Ta thấy rằng mẫu là số dương nên để P lớn nhất thì mẫu bé nhất hay x = 0
\(P=\frac{2}{3}\)
1/ Đặt \(\sqrt{x}=a\:voi\:a\ge0\) thì pt thành
\(\frac{2-5a}{a+3}=\frac{5-8a}{3a+1}\)
\(\Leftrightarrow7a^2-20a+13=0\)
<=> (a - 1)(7a - 13) = 0
a)x=4+3-5
x=2
b)10-x+3=8
10-x=8-3
10-x=5
x=10-5
x=5
x+5-3=4
x+5 =4+3
x+5 =7
x =7-5
x =2
Vậy x=2
10-x+3=4+3+1
10-x+3=8
10-x =8-3
10-x =5
x =10-5
x =5
Vậy x=5