Cho I = ∫ - 1 2 1 2 x 2 d x ( e x + 1 ) ( x 2 - 1 ) . Khi đó (a+b) bằng
A. 0
B. 1
C. 5
D. -2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau ghi tách ra tí bạn ơi ;v
--------------------------------
1. a) \(5x-20y=5\left(x-4y\right)\)
b) \(5\left(x-1\right)-3x\left(x-1\right)=\left(x-1\right)\left(5-3x\right)\)
c) \(x\left(x+1\right)-5x-5=x\left(x+1\right)-5\left(x+1\right)\)
\(=\left(x+1\right)\left(x-5\right)\)
d) \(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)\left(x+y-x+y\right)\)
\(=4xy\)
e) \(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\)
\(=2x\left(4x+2\right)\)
2. a) \(x+5x^2=0\)
\(\Leftrightarrow x\left(1+5x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\1+5x=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{5}\end{matrix}\right.\)
Vậy...
b) \(x+1=\left(x+1\right)^2\)
\(\Leftrightarrow x+1-x^2-2x-1=0\)
\(\Leftrightarrow-x^2-x=0\)
\(\Leftrightarrow-x\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-x=0\\x+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy...
c) \(x^3+x=0\)
\(\Leftrightarrow x\left(x^2+1\right)=0\)
Vì \(x^2+1>0\Rightarrow x=0\)
Vậy...
d) \(x^3-0,25x=0\)
\(\Leftrightarrow x\left(x^2-0,25\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-0,25=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm0,5\end{matrix}\right.\)
Vậy..
e) \(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Rightarrow x-5=0\)
\(\Rightarrow x=5\)
Vậy...
a: Để A nguyên thì 2 chia hết cho x
=>\(x\in\left\{1;-1;2;-2\right\}\)
b: Để B nguyên thì \(1-x\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{0;2;-2;4\right\}\)
c: C nguyên thì \(2x+7\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{-3;-4;-1;-6\right\}\)
d: D nguyên
=>x+1+1 chia hết cho x+1
=>\(x+1\in\left\{1;-1\right\}\)
=>\(x\in\left\{0;-2\right\}\)
e: E nguyên
=>x-1+5 chia hết cho x-1
=>\(x-1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{2;0;6;-4\right\}\)
f: G nguyên
=>2x+6 chia hết cho 2x-1
=>2x-1+7 chia hết cho 2x-1
=>\(2x-1\in\left\{1;-1;7;-7\right\}\)
=>\(x\in\left\{1;0;4;-3\right\}\)
h: H nguyên
=>11x+22-37 chia hết cho x+2
=>\(x+2\in\left\{1;-1;37;-37\right\}\)
=>\(x\in\left\{-1;-3;35;-39\right\}\)
Bài 1 :
A= x(x-6)+10= x² - 6x + 10 = x² - 6x + 9 + 1 = (x - 3)² + 1
Vì (x - 3)² ≥ 0
---> (x - 3)² + 1 > 0
Vậy x(x + 6) + 10 luôn dương (đpcm)
B=x2-2x+9y2-6y+3=(x-1)2+(3y-1)2+1>0
Bài 2 :
A=x2-4x+1=x2-4x+4-3=(x-2)2-3
Vì (x-2)2≥≥0∀∀x ⇒⇒(x-2)2-3≥≥-3∀x
Vậy min A = -3
B=4x2+4x+11=4(x2+x+11/4)=4(x2+2.x.1/2+1/4+10/4)=4(x+1/2)2+10
=> B min = 10
C=(x-1)(x+3)(x+2)(x+6)
C=(x-1)(x+6)(x+3)(x+2)
C=(x2+5x-6)(x2+5x+6)
Đặt x2+5x+6=t . Ta có:
C= (t-12).t=t2-12t=t2-12+36-36=(t-6)2-36
C= (x2+5x+6-6)2-36=(x2+5x)2-36
Vì (x2+5x)2≥0∀x ⇒⇒(x2+5x)2-36≥-36∀x
Vậy min C= -36
D=5-8x-x2=-(x2+8x-5)=-(x2+8x+16-21)=-[(x+4)2−21][(x+4)2−21]
D=-(x+4)2+21=21-(x+4)2
Vì (x+4)2≥0∀x⇒⇒21-(x+4)2≤21∀x
Vậy max D=21
E=4x-x2+1=-(x2-4x-1)=-(x2-4x+4-5)=-[(x−2)2−5][(x−2)2−5]=-(x-2)2+5=5-(x-2)2
Vì (x-2)2≥0∀x⇒⇒5-(x-2)2≤5∀x
Vậy max E=5
*∀x : với mọi x
Đáp án A