Cho a+b+c>0
ab+bc+ca>0
abc>0
Chứng minh cả 3 số a,b,c đều dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C2: Giả sử a<0,vì abc>0 nên bc<0.
Mặt khác thì ab+ac+bc>0
<=>a(b+c)>-bc>0
=>a(b+c)>0,mà a<0 nên b+c<0
=>a+b+c<0(vô lý).
Vậy điều giả sử trên là sai,
a,b,c là 3 số dương.
C1: Giả sử a ; b ; c đều không chia hết cho 3 ; khi đó a^3 ; b^3 ; c^3 đều không chia hết cho 27
=> a^3 ; b^3 ; c^3 đều khác 27x với x thuộc Z
=> a^3 + b^3 + c^3 khác 27x + 27x + 27x = 9^2 x (trái với gt)
=> đpcm
Giả sử a <0
Vì abc>0 nên bc <0
Có ab+bc+ca>0
<=>a(b+c)>-bc
Vì bc<0=>-bc>0
=>a(b+c)>0
Mà a<0 nên b+c<0
=> a+b+c<0
Mà theo đề a+b+c>0
=> điều giả sử sai
=> điều pk chứng minh
Giả sử ba số , , không đồng thời là các số dương thì có ít nhất một số không dương.
Không mất tính tổng quát, ta giả sử a ≤ 0
Nếu thì (mâu thuẫn với giả thiết
Nếu thì từ .
Ta có (mâu thuẫn với giả thiết)
Vậy cả ba số , và đều dương.
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Đề đúng: Cho a,b,c thỏa mãn a+b+c>0; ab+bc+ac>0; abc>0. Chứng minh a,b,c>0
Vì abc>0 nên có ít nhất 1 số lớn hơn 0
Vai trò của a, b, c như nhau nên chọn a>0
TH1: b<0;c<0
\(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\)
\(\Rightarrow b^2+2bc+c^2< -ab-ac\)
\(\Rightarrow b^2+bc+c^2< -\left(ab+bc+ca\right)\)(vô lí)
TH2: b>0, c>0 thì a>0( luôn đúng)
Vậy a, b, c >0
cách khác :
Giả sử a ; b ; c đều không chia hết cho 3 ; khi đó a^3 ; b^3 ; c^3 đều không chia hết cho 27
=> a^3 ; b^3 ; c^3 đều khác 27x với x thuộc Z
=> a^3 + b^3 + c^3 khác 27x + 27x + 27x = 9^2 x (trái với gt)
=> đpcm
Giả sử a<0,vì abc>0 nên bc<0.
Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0
=>a(b+c)>0,mà a<0 nên b+c<0
=>a+b+c<0(vô lý).
Vậy điều giả sử trên là sai,
a,b,c là 3 số dương.