Gọi x 1 , x 2 là hai nghiệm của phương trình 5 x - 1 + 5 . 0 , 2 x - = 26 . Tính S = x 1 2 + x 2 2
A. 10
B. 0
C. 6
D. 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{x-1}+5.0,2^{x-2}=26\)
\(\Leftrightarrow5^{x-1}+\frac{5}{5^{x-2}}=26\)
\(\Leftrightarrow5^{x-1}+\frac{25}{5^{x-1}}=26\)
Đặt \(5^{x-1}=a\)
\(\Rightarrow a+\frac{25}{a}=26\)
\(\Leftrightarrow a^2-26a+25=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=25\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}5^{x-1}=1\\5^{x-1}=25\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-1=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
(mình chỉ gợi ý cách làm thôi nhé!)
Phần 1 tính delta Cm delta luôn >0
Phần 2 Xử dụng hệ thức Vi-et
Câu b bạn học công thức là làm được mà. Câu a thì dùng \(\Delta\)như bạn kia nói ý
a) b) HS tự làm.
c) Hai phương trình đã cho không tương đương.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Theo định lý Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=2m-2\end{matrix}\right.\)
Ta có: \(x_1^2+2\left(m+1\right)x_2+2m-2\)\(=x1^2+x_1+x_2.x_2+x_1.x_2\)
\(=x_1^2+2x_1x_2+x_2^2=\left(x_1+x_2\right)^2\) \(=\left[2\left(m+1\right)\right]^2=4\left(m+1\right)^2\)
Ta có: \(4\left(m+1\right)^2=9\Leftrightarrow\left(m+1\right)^2=\dfrac{9}{4}\) \(\Leftrightarrow\left[{}\begin{matrix}m+1=\dfrac{3}{2}\\m+1=\dfrac{-3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=\dfrac{-5}{2}\end{matrix}\right.\)
Vậy \(m=\dfrac{1}{2};m=\dfrac{-5}{2}\) thoả mãn yêu cầu đề bài
Dấu bằng thứ nhất sau chữ ta có đầu tiên sửa thành: \(x_1^2+\left(x_1+x_2\right).x_2+x_1x_2\)