K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2021

a/

\(AN\perp AB;MH\perp AB\)=> AN // MH

\(AM\perp AC;NH\perp AC\)=> AM // NH

=> AMHN là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có \(\widehat{MAN}=90^o\)

=> AMHN là hình chữ nhật (Hình bình hành có 1 góc băng 90 độ là HCN)

b/ Nối A với E; A với F

Xét tg vuông AME có \(\widehat{AEM}+\widehat{EAM}=90^o\) (1)

Ta có ME=MI; \(AM\perp EH\) => tg AEH cân tại A (tam giác có đường trung tuyến đồng thời là đường cao là tg cân)

\(\Rightarrow\widehat{AEM}=\widehat{AHM}\) Mà  \(\widehat{AHM}=\widehat{HAN}\Rightarrow\widehat{AEM}=\widehat{HAN}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{EAM}+\widehat{HAN}=90^o\)

Chứng minh tương tự ta cũng có \(\widehat{FAN}+\widehat{HAM}=90^o\)

\(\Rightarrow\widehat{EAM}+\widehat{HAN}+\widehat{FAN}+\widehat{HAM}=\widehat{FAE}=180^o\) => E; A; F thẳng hàng

Ta có 

tg AEH cân tại A => EA=HA

tg AHF cân tại A => FA=HA

=> EA=FA 

=> E đối xứng F qua A

c/ Gọi O là giao của AH và MN; K là giao của AI và MN

Xét tg vuông ABC có

\(\widehat{B}+\widehat{C}=90^o\) (1)

\(AI=IB=IC=\frac{BC}{2}\) (trung tuyến thuộc cạnh huyền) 

Xét tg vuông AHB có

\(\widehat{B}+\widehat{BAH}=90^o\)

\(\Rightarrow\widehat{C}=\widehat{BAH}\)(2)

Ta có IA=IB => tg AIB cân tại I \(\Rightarrow\widehat{B}=\widehat{BAI}\) (3)

Xét tg cân AOM có \(\widehat{BAH}=\widehat{AMN}\) (4)

Từ (1) (2) (3) và (4) \(\Rightarrow\widehat{AMN}+\widehat{BAI}=90^o\Rightarrow\widehat{AKM}=90^o\Rightarrow AI\perp MN\)

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

11 tháng 10 2021

Bài 1: 

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay \(AB=\sqrt{13}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{6}{7}\)

nên \(\widehat{B}=59^0\)

hay \(\widehat{C}=31^0\)

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=BC^2+AB^2\)

\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)

hay \(AB=4\sqrt{5}cm\)

Vậy: \(AB=4\sqrt{5}cm\)

Bài 2: 

Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:

\(MP^2=MN^2+NP^2\)

\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)

hay MN=4cm

Vậy: MN=4cm

9 tháng 2 2021

Bài 1 :

- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)

\(\Leftrightarrow AB^2+8^2=12^2\)

\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )

Vậy ...

Bài 2 :

- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :

\(MN^2+NP^2=MP^2\)

\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)

\(\Leftrightarrow MN=4\) ( đvđd )

Vậy ...

 

 

1: 

góc BAH+góc KAC=90 độ

góc BAH+góc ABH=90 độ

=>góc KAC=góc ABH

Xét ΔHBA vuông tại H và ΔKAC vuông tại K có

BA=AC

góc ABH=góc CAK

=>ΔHBA=ΔKAC

17 tháng 2 2018

giải tam giác ABC  vuông cân tại A là sao

28 tháng 3 2019

BC2=170

1 tháng 10 2023

Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?

1 tháng 10 2023