K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Đáp án C

Ta có y ' = 3 a x 2 + 2 b x + c  

Hàm số đồng biến trên ℝ ⇔ y ' ≥ 0 , ∀ x ∈ ℝ  

T H 1 : a = 0 ⇒ y ' = 2 b x + c ⇒ b = 0 ⇒ y ' = c > 0 ⇔ c > 0 b ≠ 0 ⇒ y ' = 2 b x + c ≥ 0 ⇔ c ≥ − c 2 b ⇒ a = b = 0 , c = 0 T H 2 : a ≠ 0 ⇒ y ' ≥ 0 , ∀ x ∈ ℝ ⇔ a > 0 Δ = 2 b 2 − 12 a c ≤ 0 ⇔ a > 0 b 2 − 3 a c ≤ 0  

Kết hợ 2TH, ta có a = b = 0 , c > 0 a > 0 , b 2 − 3 a c ≤ 0  

19 tháng 3 2017

Cho hàm số: y = -3 x 2 . Ta có: a = -3 < 0 nên hàm số đồng biến khi x < 0.

Chọn C) Khi -15 < x < 0, hàm số đồng biến.

a: Hàm số này đồng biến vì \(2-\sqrt{3}>0\)

b: \(f\left(2+\sqrt{3}\right)=4-3-1=0\)

\(f\left(\sqrt{3}\right)=2\sqrt{3}-3-1=2\sqrt{3}-4\)

27 tháng 5 2018

Đáp án A

Phương pháp:

Xét tính đúng sai của các đáp án dựa vào các kiến thức hàm số đồng biến, nghịch biến trên khoảng xác định.

Cách giải:

*2 sai vì với c 1 < c 2 bất kỳ nằm trong a ; b ta chưa thể so sánh được f c 1 và  f c 2

*3 sai. Vì y' bằng 0 tại điểm đó thì chưa chắc đã đổi dấu qua điểm đó. VD hàm số  y = x 3

*4 sai: Vì thiếu điều kiện tại f ' x = 0 hữu hạn điểm.VD hàm số y = 1999 có y ' = 0 ≥ 0 nhưng là hàm hằng.

Chú ý khi giải:

HS thường nhầm lẫn:

- Khẳng định số 4 vì không chú ý đến điều kiện bằng 0 tại hữu hạn điểm.

- Khẳng định số 3 vì không chú ý đến điều kiện đổi dấu qua nghiệm.

31 tháng 12 2023

TH1: Lấy \(x_1;x_2\in R\) sao cho \(0< x_1< x_2\)

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{a\cdot\left(x_1^2-x_2^2\right)}{x_1-x_2}=a\cdot\left(x_1+x_2\right)\)>0 vì \(x_1+x_2>0;a>0\)

=>Hàm số y=f(x)=ax2 đồng biến khi x>0 nếu a>0

TH2: Lấy \(x_1;x_2\in R^+;0< x_1< x_2\)

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{a\cdot\left(x_1^2-x_2^2\right)}{x_1-x_2}=\dfrac{a\left(x_1-x_2\right)\left(x_1+x_2\right)}{x_1-x_2}\)

\(=a\left(x_1+x_2\right)< 0\)(vì x1+x2>0 và a<0)

=>Hàm số nghịch biến khi x>0

TH3: Lấy \(x_1;x_2\in R^-\) sao cho \(x_1< x_2< 0\)

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{a\left(x_1^2-x_2^2\right)}{x_1-x_2}=\dfrac{a\left(x_1+x_2\right)\left(x_1-x_2\right)}{x_1-x_2}\)

\(=a\left(x_1+x_2\right)>0\) vì a<0 và x1+x2<0

=>Hàm số đồng biến khi x<0

 

12 tháng 11 2017

a) Ta có a = 1- √5 < 0 nên hàm số đã cho nghịch biến trên R.

b) Khi x = 1 + √5 ta có:

    y = (1 - √5).(1 + √5) - 1 = (1 - 5) - 1 = -5

c) Khi y = √5 ta có:

    √5 = (1 - √5)x - 1

=> √5 + 1 = (1 - √5)x

Để học tốt Toán 9 | Giải bài tập Toán 9

(hoặc trục căn thức ở mẫu như dưới đây:

Để học tốt Toán 9 | Giải bài tập Toán 9

a: Khi x>0 thì y>0

=> Hàm số đồng biến

Khi x<0 thì y<0

=> Hàm số nghịch biến

b: Khi x>0 thì y<0

=> Hàm số nghịch biến

Khi x<0 thì y<0

=> Hàm số đồng biến

23 tháng 11 2023

a)

Ta thấy \(\sqrt{3}-2< 0\) nên hàm số trên nghịch biến trên R

b) 

\(\sqrt{3}-7=\left(\sqrt{3}-2\right)x+5\)

\(\Leftrightarrow\sqrt{3}-12=\left(\sqrt{3}-2\right)x\)

\(\Leftrightarrow x=\dfrac{\sqrt{3}-12}{\sqrt{3}-2}\)

3 tháng 5 2023

A :>

 

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^