Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x - 2 x 2 – m x + 1 có đúng 3 đường tiệm cận
A. -2 < m < 2
B. m > 2 m < - 2 m ≠ - 5 2
C. m < - 2 m > 2
D. m < - 2 m > 2 m ≠ 5 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ta có: lim x → + ∞ y = 0 ⇒ đồ thị hàm số có 1 tiệm cận ngang là y = 0 .
Để đồ thị hàm số có 3 tiệm cận thì phương trình : g x = x 2 − 2 m x + m + 2 = 0 có 2 nghiệm phân biệt
x 1 > x 2 ⇔ Δ ' = m 2 − m − 2 > 0 x 1 − 1 x 2 − 1 ≥ 0 x 1 − 1 + x 2 − 1 > 0 ⇔ m + 1 m − 2 > 0 x 1 x 2 − x 1 + x 2 + 1 ≥ 0 x 2 + x 2 > 2 ⇔ m + 1 m − 2 > 0 m + 2 − 2 m + 1 > 0 2 m > 2 ⇔ 3 ≥ m > 2.
Đáp án là C.
Ta luôn có 1 đường tiệm cận ngang y = 1
Đồ thị hàm số có đúng 2 đường tiệm cận đứng x 2 + m = 0 có nghiệm x = 1 hoặc x = 2 ⇔ m = - 1 m = - 4
Đáp án B(Cm) có hai đường tiệm cận đứng có hai nghiệm phân biệt khác 1