Cho đt (d) có PT: y= (2m+1)x+3-4m. Tìm m để k/c từ A(1;2) đến đth (d) là lớn nhất. ( Giúp em câu này với ạ!)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=5 vào pt, ta được:
5^2-2(m-1)*5+m^2-4m+3=0
=>m^2-4m+3+25-10m+10=0
=>m^2-14m+38=0
=>(m-7)^2=11
=>\(m=\pm\sqrt{11}+7\)
b: x1+x2=2m-2
x1*x2=m^2-4m+3
(x1+x2)^2-4x1x2
=4m^2-8m+4-4m^2+4m-6
=-4m-2
(x1+x2)^2-4x1x2+2(x1+x2)
=-4m-2+4m-4=-6
1a)m =1 =>( d1) y = x+2
(d2) y = -x +2 ; có a1. a2 = 1.(-1) = -1 => (d1) vuông góc với (d2)
b) để (d1) vuông góc (d2)
m(2m -3) =-1 => 2m2 -3m +1 =0 => m= 1 hoặc m =1/2
2.+ Gọi PT AB là y=ax+b
ta có \(\int^{4a+b=-1}_{2a+b=-15}\Rightarrow\int^{2a=14}_{b=-1-4a}\Rightarrow\int^{a=7}_{b=-29}\)
AB: y=7x-29
(d/) y = a1x +b1 song song với y=-3x +5 => a1 =-3 ; cắt (d) tại trúc tung => b1=-29
=> (d/) : y = - 3 x -29
\(\left\{{}\begin{matrix}x=2t\\y=1-3t\end{matrix}\right.\) \(\Rightarrow d\) nhận \(\left(2;-3\right)\) là 1 vtcp
Khi đó \(k\left(2;-3\right)\) với \(k\ne0\) cũng là vtcp của d
Ví dụ lấy \(k=2\) ta được 1 vtcp khác là \(\left(4;-6\right)\)
Từ đó suy ra được 2 vtpt là \(\left(3;2\right)\) và \(\left(6;4\right)\)
b/ Cho \(t=1\Rightarrow A\left(2;-2\right)\)
Cho \(t=0\Rightarrow B\left(0;1\right)\)